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Nomenlature3 + 1 odd number of inoming and outgoing legs� uto� funtion� o�-diagonal self-energy or external �eld� ountertermG matrix Green's funtion� e�etive ation� uto� parameter� ritial saleU matrix of e�etive interations� hemial potential� multipliity of degrees of freedom introdued to take into aount symmetrybreaking�m bosoni Matsubara frequeny
 thermodynami potential (only in hapters 2 and 4)!n fermioni Matsubara frequeny , � Grassmannian �eldsQ quadrati part of the ation� density of statesS single-sale propagator� self-energy�i Pauli matrix" dispersion relation 6



Q (�; �; : : : )� dispersion relation minus hemial potentialB bubble, y annihilation/reation operatorE quasi-partile dispersionH HamiltonianS ationT temperaturet, t0 hopping amplitude between nearest and next-nearest neighbors, respetivelyT ritial temperatureU0, V0 bare ouplings/interationsV , U , 
, X, W e�etive interationsW one half of the bandwidth in hapters before the �fth, anomalous e�etiveinteration therein and thereafterW generating funtional of the onneted Green's funtionsZ partition funtion1PI one-partile irreduibleBCS Bardeen, Cooper, Shrie�erBEC Bose-Einstein ondensationCDW harge-density wavedet determinantDoS density of statese� e�etiveext externalfRG funtional renormalization groupi.a. interating or interationIm imaginary part 7



kin kinetiMF mean �eldPH partile-holePP partile-partileRe real partRG renormalization groupRHS right-hand sidetd. pot. thermodynami potentialTr Traew/o fw setting all 3 + 1 e�etive interations to zerowith fw keeping all 3 + 1 e�etive interations
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Chapter 1Introdution
1.1 ContextInterating many-partile systems ontain fasinating physis, presenting a wealthof phases with experimentally and tehnologially exploitable properties as dis-parate as superondutivity, large magnetoresistanes and multiferroiity. The-oretially understanding the ourene of these phenomena would failitate thedevelopment of new materials as well as their tehnologial employment whileempowering experimentalists to optimize their measurements and experiments.However, mirosopially understanding the phase transitions whih are at theheart of the problem is an intriguing hallenge epitomized by the break-down ofperturbation theory, whih is so suessful in other �elds of theoretial physis.1.1.1 Funtional renormalization group shemesRenormalization group (RG) methods are powerful tools that failitate the system-ati investigation of the physis of many-partile systems even in situations whereperturbation theory breaks down. In the Wilsonian RG approah for an ationontaining monomials up to quarti order in the underlying �elds, the degrees offreedom are ordered by their kineti energy and taken into aount suessively.Contributions from the individual degrees of freedom are summed up starting atthe highest energy. This an be viewed as generating a family of e�etive ationsalled the RG ow and parametrized by the lowest energy sale taken into aount,whih is alled the uto�. Wilson (1971b) originally devised this method to inves-tigate ritial phenomena in a generalized Ising model. Some important points inthe development of his idea are listed in the following. Weinberg (1973) expliitlyinluded the momentum dependene of the self-energy for the �rst time beyondZ-fator renormalization in an RG alulation. Wegner and Houghton (1973) em-ployed an e�etive Hamiltonian as a generating funtional to derive exat RGequations. Nioll and Chang (1977), foussing on the generating funtional for theone-partile irreduible (1PI) Green's funtions, found both an expliit di�erentialequation for the generating funtional as well as a simpli�ation of the Wegner-Houghton ow equations. Aessing the RG via a generating funtional proved9



1 Introdutionto be a fruitful avenue: Polhinski (1984) started from the partition funtion toobtain a hierarhy of di�erential equations allowing him to prove renormalizabilityof ertain salar �eld theories. Wiezerkowski (1988) derived a di�erent but alsoexat hierarhy whih is partiularly well-suited for mathematial onsiderations.Wetterih (1993) developed a ow equation for the 1PI e�etive ation and deriveda hierarhy of di�erential equations for the 1PI vertex funtions, motivated by rit-ial phenomena in statistial mehanis and high-temperature phase transitions inpartile physis.The term `exat RG' is frequently used if an exat ow equation or exat hi-erarhy of ow equations as desribed above is used to derive an approximation.However, if fermioni models are studied in this way, the term `funtional RG'(fRG) is also ommon, and is adopted in the following. Early investigations us-ing Wilson's RG for fermions were undertaken by Benfatto and Gallavotti (1990);Feldman and Trubowitz (1990, 1991). This approah together with an analytiallassi�ation of the parts of the owing oupling funtions aording to RG rel-evane was popularized by Shankar (1991, 1994). A hierarhy of fermioni owequations was derived by Salmhofer (1998a) from the Wik-ordered e�etive inter-ation and used for mathematial investigations. Later, an equivalent ow equationhierarhy was derived from the generator of the 1PI vertex funtions by Salmhoferand Honerkamp (2001). This work is based on the latter hierarhy. Another re-ent development for fermions is the exat hierarhy of two-partile irreduible owequations (Dupuis (2005)) named after the property of the vertex funtions alu-lated in the ow. They have proven onvenient for the study of symmetry-breakingdue to the favorable analytial properties of these vertex funtions. We note the�rst dimension of the struture of the fRG �eld whih this work belongs to: thereare various shemes, equivalent in priniple, whose di�erenes are reeted in thequantities alulated and the diagrams used in their formulation. The distintionis important beause approximations are used in most appliations and may leadto variations in the results depending on the sheme employed.The solid and versatile formal base whih the generating funtionals providehas also leveraged the development of new types of ow parameters. It was realizedthat the uto� an formally be introdued via a uto� funtion whih an be hosenarbitrarily provided that ertain di�erentiability onditions are met and that thereis a well-understood starting point. While earlier investigations mostly refer tothe physially appealing original energy- or momentum-shell uto�, taking intoaount the degrees of freedom ordered by their frequeny has proven similarlysuessful (Enss (2005); Andergassen (2006)). Perhaps more astonishingly, thephysial temperature (Honerkamp and Salmhofer (2001)) as well as the interationstrength (Honerkamp et al. (2004)) have been introdued as ow parameters. Thelatter two proedures have the omputational advantage of sanning a slie of thephase diagram in a single RG run, while the former shemes yield informationabout a single point only. Thus, we note a seond dimension in the struture ofthe �eld: di�erent uto� funtions, equivalent in priniple but exhibiting spei�advantages and disadvantages in pratie, an be hosen.10



1.1 ContextIn studies of the eletroni struture of ondensed matter, the basi buildingbloks are spin-12 eletrons, whih are fermions. However, it an be advantageousto formally replae fermion bilinears with bosoni �elds to remove the part of theation quarti (and troublesome) in the original fermions (Altland and Simons(2006)). This exat proess is alled a Hubbard-Stratonovih transformation. Itpermits simpli�ations based on physial intuition about the bosoni �elds. How-ever, the deoupling of the quarti part of the ation is ambiguous insofar as thedistribution of the fermioni interation over di�erent bosoni hannels an be var-ied. This variation introdues a bias into the approximations that follow. The fRGliterature based on the idea of introduing bosons is rooted in �eld-theoreti high-energy physis, building on the approah by Wetterih (1993). At �rst, investiga-tions foussed on �eld-theoretial models. By exploiting an analogy to quantumeletrodynamis, Bergerho� et al. (1996) disussed the nature of the transition inboth type-I and type-II superondutors. Symmetry breaking remained an impor-tant topi, with Rosa et al. (2001); H�oing et al. (2002) studying the universal andritial properties of the Gross-Neveu and Neveu-Yukawa models. Spontaneous or-dering in a fermioni system was studied by Baier et al. (2004); Baier et al. (2005),who investigated antiferromagnetism in the two-dimensional repulsive Hubbardmodel, introduing a bosoni �eld to take into aount the symmetry breaking.Motivated by the same model, Krahl and Wetterih (2007) investigated a systemexhibiting d-wave superondutivity. Reently, Sh�utz et al. (2005) have modi-�ed the formalism to emphasize the importane of arefully treating the fermionidegrees of freedom on an equal footing with the bosoni ones. Sh�utz and Kopi-etz (2006) provided examples of alulations in phases with symmetry breakingemploying this modi�ation.A number of works whih keep the fermioni degrees of freedom while not in-troduing any additional �elds have appeared reently. Several of them are basedon Salmhofer (1998b) or Salmhofer and Honerkamp (2001). A series of studieson the repulsive Hubbard model was ommened by Zanhi and Shulz (1998);Halboth and Metzner (2000) �nding antiferromagnetism and d-wave superon-dutivity with di�erent fRG approahes. These works ope with divergent owsarising in the symmetry-broken phase by identifying leadingly divergent ouplingsand suseptibilities, respetively. Despite these divergenies at a ritial sale, anumber of insights were gained from this approah also later on. Honerkamp andSalmhofer (2001) employed a temperature ow, foussing on the interplay of fer-romagnetism and di�erent types of superondutivity. Honerkamp et al. (2001)disussed the (in)stability of the Fermi liquid in the two-dimensional Hubbardmodel. Rohe and Metzner (2005) studied the pseudogap phenomenon and theimportane of hot spots where the Fermi surfae intersets the umklapp surfae.Fu et al. (2006) found that introduing phonons into the Hubbard model supportsd-density-wave order. Reiss et al. (2007) onsidered the interplay of antiferro-magnetism and d-wave superondutivity by ombining the fRG with a mean-�eldalulation, obtaining quantitative results for the appropriate order parameters.The ow is stopped above the ritial sale and an e�etive model ontaining11



1 Introdutionthe remaining sales is solved using mean-�eld theory, thereby sidestepping thedivergene. Other reent works have foussed on improving the method itself.Honerkamp et al. (2004) introdued the onept of the interation ow. Salmhoferet al. (2004); Gersh et al. (2005); Gersh et al. (2006b) foussed on alulationsin symmetry-broken regimes and provide the foundation of this thesis. The latterworks are based on a modi�ation of the ow equations by Katanin (2004) whihimproves the ful�llment of Ward identities in fRG ows. If the feedbak of theorder parameter on the ow of the e�etive interations is taken into aount, it is�nally possible to irumvent the divergene of the ow in the symmetry-brokenphase. Thus, systems an be taken into aount in their entirety, as has previouslyonly been done in symmetri-phase studies. Two examples of suh studies for one-dimensional systems are provided by Enss et al. (2005); Andergassen et al. (2006)investigating universality regimes, ondutanes, and the Kondo e�et in systemswith impurities. A brief review on fRG reent work on the two-dimensional re-pulsive Hubbard model as well as on one-dimensional systems with impurities isprovided by Metzner (2005).Thus reviewing the reent fRG literature, we note that by hoosing the nature ofthe �elds onsidered, either keeping the fermioni degrees of freedom or introduingbosoni ones in addition or stead, a study posits itself in the third dimension ofthe �eld. This ompletes our brief overview of the appliation of the fRG in thestudy of the behavior of interating eletrons in ondensed matter.1.1.2 CountertermsCounterterms, the essential idea behind whih is to write 0 = a�a and to treat onea as an addition to the interating and the other a as an addition to the noninter-ating part of the ation, are key to the methodologial developments introduedin this work. They have already been employed in fRG alulations before, notablyin studies on the symmetri state of interating eletron systems. An early workby Feldman and Trubowitz (1990) onsiders systems with spherial free Fermisurfaes. Unphysial infrared divergenies of perturbation theory are removed byadjusting the hemial potential on the propagator lines to the interating Fermisurfae, ountering this by an appropriate addition to the self-energy. The additionis determined by renormalization-group methods. This proedure an be viewedas a shift from the hemial potential into the interation. Feldman et al. (1996)employ it for more general Fermi surfaes whih neessitate a ounterterm thatis a funtion in momentum spae. They identify and �nd bounds for the mostsingular ontributions to this ounterterm funtion under slightly more restritiveonditions in Feldman et al. (1999). The authors prove regularity properties of theounterterm funtion in Feldman et al. (1998), whih they use to study the invert-ibility of the mapping indued by the ounterterm whih transforms the interatingto the orresponding free Fermi surfae (Feldman et al. (2000)).Counterterms have also been used in the study of symmetry breaking. The workby Feldman and Trubowitz (1991) is devoted to ows with symmetry-breaking inthe Cooper hannel for a spherially symmetri eletron-phonon system. Coun-12



1.1 Contextterterms are again used to remove unphysial divergenies as in Feldman andTrubowitz (1990). The self-onsisteny equation for the superonduting orderparameter is reovered as an approximation from the ow. Neumayr and Metzner(2003) study the interplay of d-wave superondutivity and Fermi surfae deforma-tions by a ounterterm tehnique. The e�etive interations ausing the symmetrybreaking are onstruted order by order in perturbation theory. The ountertermis determined by setting the self-energy on the Fermi surfae equal to zero, giv-ing rise to a self-onsisteny equation. This ompletes the overview of the use ofounterterms with partiular emphasis on the fRG and also �nishes the disussionof the methodologial ontext.1.1.3 Hubbard modelOne of the simplest models to study interating eletrons is the Hubbard model,originally introdued to study ferromagnetism of itinerant eletrons by Hubbard(1963); Kanamori (1963); Gutzwiller (1965). Essentially, the eletrons are onsid-ered to be loated on the sites of a lattie, their ability to transfer from one siteto another usually diminishing with inreasing distane between the sites, whileon�gurations with two eletrons on the same site are either favored or disfavored.The former property sets the itinerant harater of the onstituent eletrons, whilethe latter determines the interation. This model exhibits omplex behavior farbeyond its super�ial simpliity. The repulsive version, in whih double oupationis disfavored, has drawn onsiderable attention espeially following the onjetureby Anderson (1987) that it explains the phenomenon of superondutivity at veryhigh ritial temperatures in ertain eramis (Bednorz and M�uller (1986)) if re-strited to two dimensions.The attrative version has similarly been under intense investigation. The qual-itative properties are well-understood in ertain ases (see Salettar et al. (1989);Alvarez and Gonz�alez (1998)) and reviewed by Minas et al. (1990). Importantonlusions inlude that superondutivity arises below a ritial temperature.The superondutivity is degenerate with a density-wave order if there is nesting.At weak oupling, results for the order parameter have been obtained by studyingperturbation theory up to seond order by Mart��n-Rodero and Flores (1992). Atintermediate oupling, Monte Carlo investigations have been employed to studythe BCS to Bose-Einstein ondensation (BEC) rossover (Singer et al. (1996)) andthe pseudogap phenomenon (Randeria et al. (1992); dos Santos (1994)) knownfrom high-T superondutivity. T -matrix approahes (Keller et al. (1999)) havealso proven fruitful for the study of the BCS to BEC rossover. At strong oupling,Robaszkiewiz et al. (1981) found a way to map the Hubbard model onto an e�e-tive anisotropi Heisenberg spin model, from whih results ould be obtained bymean-�eld alulations. In the same work, a mapping from the attrative modelat arbitrary �lling to the repulsive model in a �nite magneti �eld is introdued.Reent investigations with modern methods have been atuated by the desire tofurther investigate the pseudogap phenomenon (Rohe and Metzner (2001); Toshiet al. (2005a)), to further study the rossover from BCS to BEC behavior (Toshi13



1 Introdutionet al. (2005b)), and to test the new methods' apability to study non-mean-�eldmodels (Metzner et al. (2006); Strak et al. (2007)). In this work, we study theattrative Hubbard model in the latter spirit.1.2 In this workWe strive to onstrut a method whih is able to approximate the order parametersassoiated with a mirosopi model inluding itinerant interating fermions andexternal �elds, but no disorder. We apply the funtional renormalization group(fRG) in the one-partile irreduible (1PI) sheme employing both momentum-shell as well as interation ow, treating the fermioni degrees of freedom withoutintroduing bosons to prevent bias. If symmetry-breaking { haraterized by an or-der parameter beoming �nite { ours, pratial implementations of this methodhave until reently been plagued by divergenies whih make it impossible to ob-tain quantitative results for the order parameter without employing an additionalmethod (Reiss et al. (2007)). However, Katanin (2004) has found a trunationof the 1PI fRG hierarhy whih improves the ful�llment of Ward identities in theow. Ward identities have also been fruitfully employed by Enss (2005) and ina bosoni RG (Castellani et al. (1997); Pistolesi et al. (2004)) as well as in abosoni fRG ontext (Strak et al. (2007)). Employing Katanin's trunation en-abled Salmhofer et al. (2004) to reprodue the exat order parameter of a reduedBardeen-Cooper-Shrie�er (BCS) model at zero temperature by studying the sys-tem in a small external �eld. Physial divergenies related to the Goldstone modeonly appear in the limit of vanishing external �eld. While uring divergenes, thisproedure is more diÆult ompared to its predeessors in two respets. First,there is an inrease in analytial omplexity, as the feedbak of the ow of theorder parameter onto the ow of the e�etive interations must be taken into a-ount, leading to a propagator with matrix harater. Anomalous interationsarise whih neessitate additional ow equations. Seond, there is an inrease innumerial omplexity as the integrals whih need to be omputed in the solutionof the ow equations beome more diÆult to evaluate in the Katanin truna-tion. This is due to the terms added in the integrands having a larger supportin the Brillouin zone as ompared to the terms appearing without the Katanintrunation. Also, the inrease in analytial omplexity disussed above translatesdiretly into an inrease in numerial omplexity.The present text builds on the important treatises by Katanin (2004); Salmho-fer et al. (2004), as alluded to above. We extend the appliation of the Katanin-trunated 1PI fRG to the breaking of disrete symmetries and to �nite tempera-tures by studying a redued harge-density-wave (CDW) model at half �lling forwhih the mean-�eld solution is exat. The seond-order phase transition is ap-tured exatly also by the fRG. The divergene of the e�etive interation is urbedin analogy to the ase of ontinuous-symmetry breaking. The key di�erene liesin the absene of anomalous e�etive interations and the absene of massless ol-letive exitations in the CDW ase. However, for the momentum-shell ow, the14



1.2 In this workdivergene of the e�etive interation is re-enountered at a ritial sale if theexternal �eld is redued to zero even away from ritiality. This an present aproblem for the auray of the fRG for more ompliated models in the truna-tion employed here in the following way. Beause the trunation neglets terms oforder three in the e�etive interation for models where mean-�eld theory is notexat, large e�etive interations an be tolerated safely only if they live on a suÆ-iently small part of the total phase spae, e.g. appear only in a thin shell aroundthe Fermi energy and for spei� momentum ombinations. However, the e�e-tive interation inreases with dereasing external �eld while the shell thikness aswell as the momentum ombinations involved remain almost onstant. Therefore,the ontributions negleted for a non-redued model are bound to beome moreimportant for smaller values of the external �eld. On the other hand, a largerexternal �eld implies obtaining results whih are further away from the values forspontaneous symmetry breaking at zero external �eld. Thus, the aims of keepingthe e�etive interation small during the ow in order to justify the trunationemployed and keeping the external �eld small in order to introdue as small a biasas possible are found to be oniting. These results have already been published(Gersh et al. (2005)).The redued harge-density-wave model is found to exhibit �rst-order phasetransitions in a ertain �lling range upon varying the temperature or the hemi-al potential, providing a testbed to study the ability of the method to desribe�rst-order phase transitions. By employing a ounterterm and an interation ow,the Katanin-trunated fRG is proven apable of reproduing the exat results forsuh transitions in the redued model independent of the strength of the oun-terterm: all ows terminate at one of a �nite set of strong attrators. The roleof ounterterms in the renormalization group literature as desribed above hasfoussed on the removal of divergenies. In this work, the ounterterm serves thepurpose of seleting a ertain symmetry-broken on�guration. It also opens a gapin the spetrum of the system, thereby irumventing even physial divergenesuntil the ow of the non-diverging quantities has saturated. Metastable phasesare aessible whih annot be studied using only an external �eld, as the external�eld biasses the fRG ow towards the stable on�guration in the CDW model.As an example illustrating this new-found apability, we study a simple hysteresisphenomenon where it is important to obtain results for both the stable and themetastable on�gurations. Furthermore, at least away from ritiality and for thebreaking of a disrete symmetry, the method thus onstruted does not lead to aonit in aims as known from the previous proedure. In fat, it is possible toeliminate all traes of the ritial-sale divergene away from ritiality if only adisrete symmetry is broken. These results have already been published (Gershet al. (2006b)).In order to put this methodologial development into a more general frameworkand in order to introdue the formalism employed in the following study of super-ondutivity, a generalization of the ideas of Salmhofer and Honerkamp (2001);Katanin (2004); Salmhofer et al. (2004) to the ase of general symmetry-breaking15



1 Introdutionand multiple order parameters is disussed. The idea that symmetry-breaking im-plies the rise of nonzero expetation values of pairs of fermioni operators whihare unpaired in the Hamiltonian is formalized, and the 1PI fRG equations for arbi-trary pairings are derived emphasizing their diagrammati struture. This provesuseful for a graphial understanding of the Katanin trunation.At low temperatures where symmetry breaking ours, forward sattering pro-esses in whih no momentum is transferred between the partiles involved areimportant (Metzner et al. (1998)). To understand the interplay of suh proesseswith the BCS sattering driving superondutivity, we use the formalism takinginto aount symmetry breaking in a resummation of the perturbation theory for amodel inorporating redued Cooper as well as forward sattering. We show thatthe resummation solves the model exatly. The ombination of sattering pro-esses gives rise to anomalous e�etive interations whih orrespond to operatorproduts of odd numbers of fermion annihilation and reation operators. Theseanomalous e�etive interations are referred to as 3 + 1, reeting the number ofinoming (outgoing) and outgoing (inoming) legs in a graphial representation.Equivalently, anomalous e�etive interations with four inoming legs are referredto as 4 + 0. Expliit formulas are found for these as well as for the other e�etiveinterations, permitting the study of interdependenies. The resummation shemeis numerially applied to the attrative Hubbard model as an approximation. Thee�et of the 3 + 1 on the other e�etive interations is found to vary in strength.However, it proves to be small for the e�etive interations driving symmetrybreaking. Furthermore, inluding the 3 + 1 e�etive interations does not modifythe basi nature of the dispersion relation of the Goldstone mode, as expeted.Overall, the qualitative impat of the 3 + 1 anomalous e�etive interations isfound to be small.Conluding the work is the appliation of both the newly-developed oun-terterm proedure as well as the proedure employing a small external-�eld tothe superonduting instability of the attrative Hubbard model at zero tempera-ture. The formal framework developed for general symmetry breaking permits theonurrent study of normal and anomalous interations inluding those of 3 + 1harater, fully taking into aount their inuene on the order parameter. Therenormalization proedure is arried out numerially, disretizing the momentumdependene of the e�etive interations and self-energies by pathing aordingto Rohe (2005) while dropping the energy dependene. Other pathing shemesare onsidered for example by Zanhi and Shulz (1998); Halboth and Metzner(2000). All these shemes are set up to take into aount the parts of the e�etiveinterations driving the symmetry breaking, but also others. The physial result ofthe alulation is that previous works by Mart��n-Rodero and Flores (1992); Reiss(2006) studying the inuene of utuations on the strength of the symmetrybreaking are on�rmed in their predition that the order parameter is suppressedto about 50% of its mean-�eld value at weak oupling. The order parameter ex-hibits only a negligible momentum dependene. Methodologially, it is found thatthe fRG ow equations an be integrated ompletely for the momentum-shell ow16



1.2 In this workif the external �eld is large enough. However, large ouplings arise in the ow if thedisrepany to results by Mart��n-Rodero and Flores (1992); Reiss (2006) is to bekept smaller than 20% by reduing the strength of the external �eld. Fortunately,unphysial divergenes are restrited to muh smaller values of the external �eld.The interation ow is apable of staying in the weak-oupling limit beause forthe breaking of a ontinuous symmetry as onsidered here, the rise of the e�etiveinteration is pushed towards the end of the ow by inreasing the ounterterm.However, due to the approximative nature of the method in the ontext of theattrative Hubbard model as well as the systemati errors introdued in the nu-merial implementation, the ounterterm annot be hosen arbitrarily large. Thestrong-attrator behavior enountered for the mean-�eld model is transformed intoa lustering of �nal values for ertain ounterterm strengths. A �nal value fromthis luster is taken as an approximation for the true value. This is justi�ed byonsidering the luster as the analogon of the strong attrator appearing for theredued CDW model.This thesis is strutured as follows. In hapter 2, the exat temperature andexternal-�eld dependene of the order parameter and e�etive interation for a re-dued harge-density-wave model is obtained for both �rst- and seond-order phasetransitions by solving the mean-�eld equations. Chapter 3 gives a derivation of the1PI fRG equations, introduing a formalism to take into aount symmetry break-ing and analyzing diagrammatially the ows generated by applying the Katanintrunation. Chapter 4 treats the harge-density-wave model from hapter 2 withthe fRG method from hapter 3, solving the �rst- and seond-order transitionproblems by introduing a ounterterm for the order parameter, and the seond-order problem also by introduing a small external �eld. In hapter 5, the impatof anomalous 3 + 1 e�etive interations is analyzed by employing the formalismfor symmetry-breaking in a resummation of perturbation theory. This frameworkis applied as an approximation to the attrative Hubbard model to study its ef-fetive interations. The hapter ulminates in a study of the attrative Hubbardmodel with the 1PI fRG in the Katanin trunation, studying the suppression ofthe order parameter below its mean-�eld value and omparing the ountertermwith the external-�eld ow.

17



Chapter 2Charge-density wave: mean-�eldapproahIn this setion, we introdue the onept of a phase transition following setion 4.1of Negele and Orland (1998). We disuss and solve models exhibiting phase tran-sitions, whih serve as benhmark models for our renormalization-group methods.By de�nition, a phase transition of a physial system ours if its parameterspass from a region where a loally measurable observable, for example a spetralgap or the magnetization, assumes �nite values to a region where it is zero (orin�nite). Said loally measurable observable is alled the order parameter of thephase transition, while the parameter value separating the two parameter regionsis alled ritial. The transition is said to be of seond order if the dependeneof the order parameter on the physial parameter whih is hanged is ontinuousin the ritial region. If there is an isolated disontinuity of the order parameterat the ritial parameter, the transition is onsidered to be of �rst order. We willstudy examples of both types of transitions in this setion.2.1 Seond-order phase transitionsWe ommene with the seond-order ase as it presents a slightly redued hal-lenge. This is beause due to the ontinuity ondition, a relevant minimum ofthe thermodynami potential as a funtion of the order parameter is always foundstarting at a small order parameter value.2.1.1 ModelWe introdue a model exhibiting the spontaneous formation of a harge-densitywave, whih we will use as example and benhmark for our renormalization groupalulations. The phase transition in this model is of seond order. We om-bine this introdution with a qualitative disussion. Furthermore, several formalonventions are �xed. 18



2.1 Seond-order phase transitionsWe onsider spinless fermions on a d-dimensional hyper-ubi lattie with Nsites labeled by x. The kineti energy is given by a tight-binding dispersionwith nearest-neighbor hopping amplitude t. We also assume a repulsive nearest-neighbor density-density interation V0. The Hamiltonian readsH = �tXx;n (yxx+n + h::) + V0Xx;n yxxyx+nx+n: (2.1)The sum over n runs over the d unit vetors of the d-dimensional hyperubilattie with lattie onstant set to one. We assume half �lling with an averageof one partile per two lattie sites, hnxi = 1=2. The nearest-neighbor density-density repulsion favors a harge-density wave (CDW), i.e. a periodi arrangementof the partiles in whih the probability of two partiles being nearest neighborsis redued. This tendeny ompetes with the hopping term, whih dereases withinreasing homogeneity of the eletron distribution, and with the entropy, whihinreases when this homogeneity is inreased.In the ase where a CDW is formed with a �xed modulation amplitude nCDW,the harge density hnxi takes only two values, 1=2 + nCDW on a given site and1=2� nCDW on eah adjaent site. Therefore, the half-�lled CDW state breaks adisrete Ising-type symmetry, where there are two distint ordered states. Whilein one dimension suh order an only our in the ground state, in two and higherdimension it is possible to have a nonzero ritial temperature T.For any band �lling whih is not a rational number, a CDW with an inommen-surate modulation wave-vetor generates in�nitely many di�erent density valueson the lattie sites. The lattie sites sample an osillation whih is inommen-surate with their spaing, so the density on a given lattie site does not repeaton a di�erent lattie site. The possible values form a ontinuum, and when thissymmetry is broken, at a given lattie site one of the values is assumed. Hene, aontinuous symmetry is broken.Continuing with the half-�lled ase, we Fourier-transform the Hamiltonian us-ing x = 1pN Xk eikxk (2.2)and obtain H =� 2tXk L(k) ykk+ V0N Xk1;k2;qL(q) yk1k1�qyk2k2+q; (2.3)where we have introdued L(k) = Pdi=1 os(ki). Abbreviating the dispersion"(k) = �2tPdi=1 os(ki) = �2tL(k), we note that the nesting ondition "(k) =�"(k+Q) is ful�lled for the wave-vetor Q = (�; : : : ; �). This auses a divergeneof the non-interating harge response at the nesting wave-vetor for T ! 0. If19



2 Charge-density wave: mean-�eld approahthe interations are treated in the random phase approximation, the harge re-sponse at Q atually diverges at a �nite temperature, giving an estimate of T forthe harge-density wave formation. In a mean-�eld treatment of the symmetry-breaking in whih the interation term is deoupled with an alternating hargedensity, anomalous partile-hole pairing expetation values hyk+Qki arise belowthe transition temperature.Although this physial piture of a CDW transition is essentially orret re-garding the ground state properties, the model (2.3) has not been solved exatly.However, by a redution of the interation keeping only proesses that hange bothpartile's momenta by Q,Hred =Xk "(k) ykk� V0N Xk1;k2 yk1k1�Qyk2k2+Q; (2.4)we obtain a solvable model, as we show below. Intuitively put, this is beause in(2.4) the interation between fermions on the lattie sites x and x0 orresponds toan in�nite range density-density interation with osillating sign,�V0N�1 os[Q(x� x0)℄nxnx0 :The in�nite range already suggests that mean-�eld theory ould be exat beauseeah partile is ated upon equally strongly by all the other partiles.We show in 2.1.2 that as in the redued BCS pairing model (M�uhlshlegel(1962)), mean-�eld theory atually is exat for the redued model (2.4) in thethermodynami limit N ! 1. Instead of the BCS ase's superonduting state,there is a CDW ordered state below a ritial T > 0 in any dimension d. For thehalf-�lled ommensurate ase, there are two distint degenerate symmetry-brokenon�gurations and the eletroni order parameter nCDW is real.For onveniene in our analyti onsiderations and beause it is essential for therenormalization group alulations, we inlude a real external �eld �ext os(Qx)oupling to partile-hole pairs ykk+Q and yk+Qk whih lifts the degeneray of theordered states by expliitly breaking the translational symmetry of the originalHamiltonian (2.4). In momentum spae, this term ouples to pairs of partileswhose momenta di�er by Q = (�; : : : ; �). If �ext is very small ompared to allother relevant energy sales, it does not hange marosopi observables awayfrom the ritial temperature. However, it allows us to integrate the RG di�eren-tial equations over all sales without enountering divergenes. The Hamiltonianinluding the external �eld readsHred =Hkin +Xk �extykk+Q� V0N Xk1;k2 yk1k1+Qyk2k2�Q: (2.5)20



2.1 Seond-order phase transitionsWe introdue a frequeny-spae �eld-integral representation in the usual way.Writing T for temperature, we de�ne the fermioni Matsubara frequenies !j :=(2j + 1)�T and obtain Grassmann �elds  k;!n ; � k;!n. Introduing the Nambu-likenotation 	k;!n = �  k;!n k+Q;!n� ;�	k+Q;!n = � � k;!n � k+Q;!n� ;the partition funtion readsZ = Z D( � ;  ) exp"�12TXn;k �	k;!nQ ("k ; !n)	k;!n�V0T 3N Xn1;n2;n3k1;k2 � k1;!n1 k1+Q;!n3 � k2;!n2 k2�Q;!4 # : (2.6)
Here, !4 = !n1+n2�n3 andQ ("k ; !n) = �i!n � "k ��ext��ext i!n + "k� (2.7)(see e.g. Lee et al. (1974)). The minus sign in front of the seond " arises fromthe Q-anti-periodiity of the osine. The doubling of the number of degrees offreedom by introduing the Nambu notation is ompensated by the 1=2 in frontof the quadrati part of the ation. Due to the expliit symmetry breaking, thereis a nonzero o�-diagonal omponent in the propagator. The method of treatingsymmetry breaking by formally aounting twie for the degrees of freedom is gen-eralized in setion 3.1. If we apply mean-�eld theory by deoupling the interationterm in the CDW hannel, the CDW order parameter due to the interation, �i:a:,will add to �ext.2.1.2 Mean-�eld solution and resummationWe would like to gain a quantitative understanding of the model (2.4) to failitateits employment as a benhmark for the renormalization group alulations. To thisend, we resum the perturbation expansions for the self-energy and the e�etive in-teration in the thermodynami limit N !1 in this setion. For our model, thisis equivalent to mean-�eld theory in the CDW amplitude with modulation wave-vetor Q. This statement is proven in the ontext of �rst-order phase transitionsin setion 2.2.2.Due to the expliit symmetry breaking with �ext 6= 0 there is a nonzero fre-queny independent o�-diagonal propagator whih satters a fermion with wave-vetor k to k+Q and vie versa. Therefore, besides normal (diagonal) wave-vetoronserving propagators, also anomalous (o�-diagonal) propagators appear in the21



2 Charge-density wave: mean-�eld approahdiagrams of perturbation theory. On a one-partile level, the interation ausesthe ourene of an o�-diagonal self-energy �i:a: supplementing �ext from the non-interating propagator (2.7). In the following, we determine �i:a: as well as thee�etive interation V .We reason hereafter that the speial momentum struture of the bare intera-tion redues the diversity of the diagrams ontributing to the perturbation expan-sion of the e�etive interation, similarly as in Gaudin (1960); Langer (1964). Wenote that the interation term in (2.5) inludes a prefator 1=N , ontributing afator 1=N2 to all seond-order diagrams in the expansion in the bare interationstrength,
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Figure 2.1: Resummation of the perturbation expansion of the redued harge-density-wave model: (a) self-energy (hathed irle) and (b) e�etive intera-tion (hathed retangle). Undireted internal lines arry a summation over theirNambu-like indies in addition to the frequeny summation and momentum in-tegration. Double-arrowed lines orrespond to o�-diagonal propagator elements,bold lines to full and thin lines to bare propagators.a fator N . For there to remain a �nite ontribution from a given seond-orderdiagram in the thermodynami limit N ! 1, the internal lines must be of or-der N . However, in all seond order diagrams exept the one also depited inFig. 2.1(b), the restrited momentum struture of the interation implies that theinternal momentum is �xed by an external momentum, leaving only a single termfrom the trae implied by the diagram. Hene, the ontribution of suh a dia-gram is O(1=N) and vanishes for N ! 1. The diagram depited retains onesummation over all degrees of freedom in spite of the bare interation's restrited22



2.1 Seond-order phase transitionsmomentum struture, yielding a �nite ontribution in the thermodynami limit.These arguments an be iterated to arbitrary order in the bare interation, show-ing that only diagrams retaining one integration per eah interation line beyondthe �rst ontribute in the thermodynami limit. Therefore, only the bubble hainsindiated in Fig. 2.1(b) ontribute to the perturbation expansion of the e�etiveinteration. The derivation of the formula in Fig. 2.1(b) is onluded by notingthat repeated substitution of the right-hand side for the hathed retangle in theright-most diagram yields the perturbation series we derived above.Next, we disuss the possible rise of anomalous e�etive interations as knownfrom the BCS ase (see setion 5.1 or Salmhofer et al. (2004)). Sine eah bub-ble in the diagrams remaining in the thermodynami limit transfers a momentumQ due to the speial struture of the bare interation, only e�etive interationproesses with a momentum transfer of Q exist. In partiular, no e�etive in-terations violating the translation symmetry are generated. This is di�erent forinommensurate harge-density waves, where pairs of internal anomalous propaga-tors add even multiples of the inommensurate harge-density wave vetor to thetotal inoming momentum, generating e�etive interations whih violate momen-tum onservation. In the half-�lled ase, any even multiple of the harge-densitywave vetor is an integer multiple of 2Q = (2�; : : : ; 2�), and thus equivalent tozero.We disuss the perturbation theory for the self-energy in order to determine�i:a:. In Fig. 2.1(a) we show the perturbation expansion for the o�-diagonal self-energy. Due to the same arguments as for the expansion of the e�etive interation,only diagrams whih retain one momentum integration per interation line on-tribute in the thermodynami limit. Therefore, in the thermodynami limit onlydiagrams onstruted by forming trees of tadpole diagrams { depited in the �rstequality of Fig. 2.1(a) { ontribute. This implies that the normal diagonal self-energy vanishes in the thermodynami limit sine a tadpole diagram will alwaystransfer a momentum Q through its base if the interation is nonzero only for thismomentum transfer. This allows us to note the full propagator G as an aside:G (i!n ; "k) = 1!2n + "2k + (�ext +�i:a:)2 � �i!n � "k ��i:a: ��ext��i:a: ��ext �i!n + "k � : (2.8)By substituting the diagrammati form
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2 Charge-density wave: mean-�eld approah
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whih we reognize from the �rst line of Fig. 2.1(a), explaining the �gure's seondequality. The diagrammati form
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��= +of the Dyson equation justi�es the last equality, albeit without the arrows. Theyappear sine if a tadpole diagram is not onneted to other tadpole diagrams,only the terms o�-diagonal in the Nambu-like spae are non-vanishing. This isbeause the outgoing momentum of suh an o�-diagonal line equals the inomingmomentum plus Q, whih is ompatible with the redued momentum struture ofthe interation. The exat resummation thus derived is equivalent to self-onsistentHartree-Fok theory of whih the Fok ontributions vanish in the thermodynamilimit. This is equivalent to the statement that Hartree mean-�eld theory is exatfor this model.With the aid of (2.8), we symbolially evaluate in the following the diagram-mati equations obtained above. We assume the density of states to be onstantover the Brillouin zone and equal to its value at the Fermi energy to removedimension-spei� e�ets. Evaluating Fig. 2.1(a) and denoting the self-energy dueto the interation by �i:a:, the band edge by W , the density of states at the Fermienergy �0, the Fermi distribution f(x) := (1 + exp(x=T ))�1, � := �i:a: + �extas well as E := p"2 + �2, we obtain the gap equation (ompare e.g. Rie andStr�assler (1973)) ���ext = V0TXn �0 Z W�W d" �!2n + E2= V0��0 Z W0 d"tanh(E=2T )E ; (2.9)where we have used (B.6). We have also assumed a at density of states �(") � �0.(2.9) resembles the BCS (Bardeen et al. (1957)) and exitoni insulator (J�erome24



2.1 Seond-order phase transitionset al. (1967)) gap equations. If we set T = �ext = 0, solving (2.9) analytiallyyields (ompare e.g. Bardeen et al. (1957); Gr�uner and Zettl (1985))� = 2t 1sinh (1=V0�0) V0�0�1� 4t exp�� 1V0�0� : (2.10)Similar equations are found in the BCS theory for superondutors (Bardeen et al.(1957)).We turn to the e�etive interation with zero frequeny transfer. As arguedabove, only fermioni bubbles ontribute in the thermodynami limit N !1. Inthe notation, we omit the arguments of the hyperboli funtions originating fromthe Fermi distribution from now on: they are always E=2T . We abbreviate thebubble integral B := �Tr(G (i!n ; "k)G (i!n ; "k+Q))= TX!n �0 Z WW !2n + "2 � �2(!2n + E2)2 (2.11)= �0 Z W0 d"E2 � �22T osh�2+ "2E tanh� ; (2.12)where we have used "k+Q = �"k for the �rst and (B.3) and (B.4) for the seondequality. The evaluation of Fig. 2.1(b) yieldsV = V01� V0B: (2.13)If �ext = 0, we an de�ne the ritial temperature T via the ondition that1 = V0B(T), i.e. that the denominator of (2.13) vanishes and V diverges. Byanalyzing (2.12) we note that this riterion for T oinides with the temperaturebelow whih we an �nd a nonzero solution of the gap equation (2.9). For smallV0 and � = 0 we �nd 1:76T � 4t exp(�1=V0�0) � �(T = 0) (see e.g. Gr�unerand Zettl (1985)). This is true when the approximation in (2.10) is valid. Thisonludes the analytial treatment of (2.5).2.1.3 Dimensionless exampleAs a �nite �ext allows us to integrate the renormalization group equations over allsales as we see in setion 4.1, we are interested in the dependene of the mean-�eld solutions (2.9) and (2.13) on �ext. In partiular, we illustrate in the followingwhere the system inluding a �nite symmetry-breaking �eld (2.5) is pratiallyindistinguishable from the system without symmetry-breaking �eld, (2.4). Tothis end, we show in the upper part of Fig. 2.2 onvergene of ��ext(T ) to �(T )for �ext ! 0. The onvergene is worst in the viinity of a kink that an bediserned at T � 0:1t in the graph for �ext = 0. As an aside, we note that theontinuity of the graph of �(T ) is the hallmark of a seond-order phase transitionaording to our de�nition at the beginning of setion 2. We would like to be more25
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2.2 First-order phase transitionsonrete about the temperature range in whih the system inluding a symmetry-breaking �eld an be used to approximate the system without symmetry-breaking�eld. To this end, we onsider the dependene of the e�etive interation onboth temperature and the symmetry-breaking �eld as plotted in the lower partof Fig. 2.2. Its singularity is regularized by a nonzero �ext whih uts o� theintegrand of the bubble integral (2.12). The �gure also shows a strong suppressionof the e�etive interation peak with inreasing �ext. Its loation onverges to Tfrom above for �ext ! 0. In the �gure, we also spot onvergene of V �ext(T ) toV (T ) for T � T and T � T. We see that V �ext(T ) � V (T ) if T is outside thedouble width at half maximum of V �ext(T ). If T is outside said width and alsobelow T, we learn from the upper part of the �gure that ��ext(T ) � �(T ). Thisis thus the temperature region in whih the initial symmetry-breaking �eld doesnot appreiably hange the physis.This onludes our study of the seond-order phase transition in the reduedCDW model. We have exatly solved the model using mean-�eld theory, deter-mining the CDW amplitude as an anomalous self-energy as well as the e�etiveinteration at zero energy transfer. We have gauged the impat of an externalsymmetry-breaking �eld on the results.2.2 First-order phase transitionsThe �rst-order ase presents a subtly elevated hallenge as ompared to the seond-order ase. As there is no ontinuity ondition, sans of the order parameter spaeare neessary. A main result of this thesis is the development of a proedure {whih is presented in setion 4.2 { to deal with these sans in the framework ofthe funtional renormalization group. In this setion, we solve a model to serve asa benhmark for this method.2.2.1 ModelWe modify the Hamiltonian (2.5) to inlude a hemial potential � whih allowsus to vary our system's �lling:Hred =Xk �(k) ykk � V0N Xk1;k2 yk1k1+Qyk2k2�Q+Xk (�ext + �i ��) ykk+Q; (2.14)where �(k) := "(k) � �. The hemial potential an be adjusted to produe asystem exhibiting a �rst-order phase transition. The dispersion ful�lls the nestingrelation "(k) = �"(k �Q). For V0 > 0 the interation term an lead to harge-density-wave ordering with wavevetor Q, as disussed in setion 2.1.2. The sametwo-sublattie harge modulation is indued by the last term, whih breaks thetranslational symmetry of the Hamiltonian by oupling a �eld alternating in spaeto the fermion density. 27



2 Charge-density wave: mean-�eld approahNote that the external-�eld part of the Hamiltonian has been blown up inomparison to (2.5) to inlude an initial self-energy �i and a ounter term �. Inthe fRG treatment, �i will be used as the initial ondition for the o�-diagonal self-energy. The ounterterm � will be inluded in the bare propagator to prevent thisfrom a�eting the physis of the system. Setting �i = � guarantees a anellationat the end of the fRG ow, and allows us to produe results at zero external �eldby setting �ext = 0. �ext is no longer neessary for the fRG ows, but allows usto study the e�et of an external �eld and hysteresis phenomena.2.2.2 Mean-�eld treatmentThe physial properties of the model for (�ext + �i ��) = 0 depend on thehemial potential �. As disussed in 2.1.2, at half-�lling (� = 0), the Fermisurfae exhibits nesting and an exat resummation of perturbation theory, equiv-alent to a mean-�eld treatment, �nds a seond-order phase transition toward theharge-density-wave state at a ritial temperature T. In this ordered state,~�i:a: := V0N Pkhykk+Qi is nonzero. This seond-order mean-�eld transition van-ishes if � is hosen large ompared to T(� = 0). In this ase, the symmetrion�guration will appear stable when onsidering only a suÆiently small viinityof �i:a: = 0. A more omplete san of the order parameters spae, however, revealsglobal minima of the thermodynami potential at �nite �i:a: for temperatures be-low a threshold Tt. These minima develop independently of the minimum at zeroorder parameter as the temperature is lowered. In suh a situation, the system'sstable on�guration hanges from symmetri with �i:a: = 0 to symmetry-brokenwith �i:a: 6= 0 disontinuously upon lowering the temperature below Tt. Thisphenomenon is the de�ning property of a �rst-order phase transition. The �� Tphase diagram for the Hamiltonian (2.14) is shown in Fig. 2.3. The T = 0 ther-
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2.2 First-order phase transitionsmodynami potentials as funtions of �i:a: desribed above are shown in Fig. 2.6for � = 0 and both for �rst-order and seond-order ases with � 6= 0.To understand how suh a simple model an have a �rst-order transition, wederive the gap equation from Fig. 2.1(a) as in (2.9). From the quadrati part ofthe ation Q (i!n ; ") = � i!n � "k + � ��ext � �i +���ext � �i +� i!n + "k + � � ; (2.15)whih is derived from (2.7) by inluding � and supplementing �ext with �i ��,we obtain the propagator as a funtion of Matsubara frequenies !n and kinetienergies "kG (i!n ; "k) = 1�(i!n + �)2 + E2k ��i!n � "k � � ��e���e� �i!n + "k � �� ; (2.16)where we have abbreviated �e� := �i:a: +�ext + �i �� and E :=p"2 +�2e� inparallel to our onventions in (2.9). Evaluating the diagrams in Fig. 2.1(a) yields�e� ��ext � �i +� = V0TN X!n;k �e��(i!n + �)2 + E2k= V0TN X!n;k �e�!2n � 2i�!n � �2 + E2k= V0TN X!n;k �e�!2n + i(E+k + E�k )!n � E+k E�k= V0N Xk �e�(E+k � E�k ) �f(E�k )� f(E+k )� ; (2.17)where the dispersion relation E� := �E � � is introdued in the third equalityand the Matsubara sum is evaluated aording to (B.14) in the last line.To failitate the arguments in this setion, we show that the gap equation analso be obtained from the variational ondition that the grand anonial poten-tial 
 be minimal if the two-partile interation is mean-�eld deoupled in anappropriate hannel. To this end, we study the partition funtionZ = Tr exp �T�1Hred� (2.18)of (2.14) without introduing �eld integrals and deouple the interation term of29



2 Charge-density wave: mean-�eld approahHred into V0N Xk1;k2 yk1k1+Qyk2k2+Q=V0N Xk1;k2 h�yk1k1+Q � Dyk1k1+QE� �yk2k2+Q � Dyk2k2+QE�+2�yk1k1+Q Dyk2k2+QE�� �Dyk1k1+QEDyk2k2+QE�i�Xk1 2 ~�i:a:yk1k1+Q � N ~�2i:a:V0 ; (2.19)where we have negleted the term quadrati in the utuations in the approxima-tion in the last line, and abbreviated ~�i:a: = V0N Pkhykk+Qi as above. Pluggingthe deoupling (2.19) into the partition funtion (2.18), we obtainZMF =Tr exp " 1T Xk ��kykk +�e�ykk+Q�+ N ~�2i:a:TV0 #=Tr exp " 12T Xk �yk yk+Q��"k � � �e��e� �"k � ��� kk+Q�+ N ~�2i:a:TV0 #=Tr exp " 12T Xk �yk �yk��E+k 00 E�k ��k�k� + N ~�2i:a:TV0 # ; (2.20)where �e� = �ext +�i �� � 2 ~�i:a: is used in the �rst line and omposite ladderoperators yk = 1p2E("k � Ek) ���e�yk � (Ek � "k)yk+Q��yk = 1p2E("k � Ek) �(�Ek + "k)yk +�e�yk+Q�are introdued in the third line. , y and �, �y obey fermioni ommutationrelations while �,  ommute. The grand anonial potential is
MF = T lnZMF= N ~�2i:a:V0 + T lnTr exp " 1TXk 0(E+k ykk + E�k �yk�k)#= N ~�2i:a:V0 + T lnYk 0 �1 + eE+k =T��1 + eE�k =T�= N ~�2i:a:V0 + TXk 0 ln�1 + eE+k =T��1 + eE�k =T� ; (2.21)30



2.2 First-order phase transitionswhere we have restrited the summation in the seond line to only one half ofthe Brillouin zone and removed a fator 1=2 in omparison to (2.20). Thesemeasures balane eah other out. Di�erentiating the grand anonial potential
MF = T lnZMF with respet to ~�i:a: and setting this derivative to zero yields2N ~�i:a:V0 +Xk �e�E+k � E�k �f(E�k )� f(E+k )� = 0: (2.22)By 2 ~�i:a: = ��i:a:, (2.22) is equivalent to (2.17).The derivation of (2.22) merits disussion. (2.22) is derived from the form(2.21) of the grand anonial potential 
MF by di�erentiating with respet to theorder parameter �i:a:. This implies that by integrating the left-hand side of thegap equation (2.22) from zero order parameter to a �nite value �, we obtain thegrand anonial potential for �. This means that if at a given �0i:a: the right-handside of (2.17) is larger (smaller) than the left-hand side, 
MF(�0i:a:) is dereasing(inreasing) in �i:a:. Therefore, we an distinguish stable, metastable, and unstableon�gurations by studying the gap equation.2.2.3 Example: two dimensionsAs an example, we disuss the zero-temperature ase in two spatial dimensionswithout external �eld and � = �i = 0. Considering the two sides of (2.17) asfuntions of �i:a:, we plot their graphs in Fig. 2.4. The right-hand side exhibits a
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2 Charge-density wave: mean-�eld approah
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MF = 0, all intersetion points are extremaor saddle-points of 
. If all intersetion points are extrema of 
(�i:a:), the out-ermost one must orrespond to a minimum of 
(�i:a:) for a thermodynamiallystable on�guration of the system to exist. Furthermore, by the onstrution of(2.22) and the disussion in the last paragraph of setion 2.2.2, the integral of thebisetor minus the right-hand side of (2.17) is equal to the energy gained throughthe opening of a �nite gap. Thus, omparing the areas enlosed by the two graphsof Fig. 2.4 determines whih of the two minima given by the intersetions has lowerenergy.Plots of the thermodynami potential are shown in Fig. 2.6. For small j�j > 0,a loal minimum develops at �i:a: = 0, whih beomes the global and �nally theonly minimum if � is inreased further. Numerial study of (2.17) and 
 for variousT and � leads to the phase diagram of Fig. 2.3.This onludes our mean-�eld investigation of the CDW mean-�eld model forgeneral �lling. We have derived the gap equation (2.17) without resorting toany approximation. In the derivation of (2.22), we have shown that mean-�eld32



2.2 First-order phase transitions
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(�i:a: = 0) is subtrated from all urves.theory yields the same result. From the quasipartile energies E� appearing inthe diagonalization in (2.20) and the way they enter (2.17), we have seen how�rst-order phase transitions arise. Our understanding of the model (2.14) thussuÆes to employ it as a testing ground for the funtional renormalization-groupmethod developed in 3.
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Chapter 3Deriving the renormalizationgroup shemeThe term funtional renormalization group (fRG) refers to any method whih de-rives a set of properties of a physial system from an exat in�nite hierarhy ofordinary di�erential equations. The di�erential equations whih we derive here anbe expressed as one-partile irreduible (1PI) Feynman diagrams, and the physialproperties alulated are the so-alled 1PI verties. Hene, this partiular inarna-tion of the fRG is alled the 1PI sheme. Other frequently-enountered implemen-tations are the Wik-ordered (Wiezerkowski (1988)) and Polhinski (Polhinski(1984)) shemes. A omparative derivation of the ow equations for eah of thesethree shemes an be found in Enss (2005), and Rohe (2005) ompares the resultsfor ertain approximate solutions in the ontext of the two-dimensional repulsiveHubbard model.3.1 General formalism for symmetry breakingOur goal in this hapter is to generalize the formal treatment of spei� brokensymmetries suh as the translation-invariane breaking introdued in setion 2.1.2.We start from the fermioni ation S typially found in the exponent of the fun-tional integral representation of a partition funtionZ = Z D( � ;  )e�S( � ; ); (3.1)see e.g. hapter 2 of Negele and Orland (1998). Separating the quadrati part, wewrite S( � ;  ) def= ( � ;Q )� ~V ( � ;  ); (3.2)where � ;  are Grassmannian �elds and we have introdued the notation( � ;Q ) =Xj � jQj j:34



3.1 General formalism for symmetry breaking~V is assumed to be a polynomial where eah monomial has an equal number of and � fators. j is the olletion of indies in whih Q is diagonal. For freepartiles, j is the triple (i!n;k; s) of Matsubara frequeny (again, see Negele andOrland (1998)), partile momentum, and spin while Qj = i!n� �k, where � is thedi�erene between the dispersion relation " and the hemial potential �.For Bardeen-Cooper-Shrie�er (BCS) superondutivity (Bardeen et al. (1957)),symmetry breaking is taken into aount by expanding Q into a matrix Q so thatthe quadrati part of the ation reads(��;Q �) = 12Xs;k � � s;k  �s;�k��i!n � �k �k��k i!n + ��k��  s;k� �s;�k� :This is equal to ( � ;Q ) if � = 0. In omparison with  , the �eld operator �has an additional index whih an assume two di�erent values. Flipping this indexreverses the spin s, the four-momentum k, and swithes the bar of the assoiated  or � to form singlet pairs of partiles or holes, � s;k � �s;�k and  �s;�k s;k, throughthe o�-diagonal elements of Q . The strength of this pairing is given by �k. Itviolates the partile-number onservation of the quadrati part of the ation andbreaks its invariane under phase shifts of the �eld operators.To generalize this formulation, we introdue a generalized Nambu index l whihan assume � di�erent values:S = ��1 Xj;l1l2 ��jl1Q j;l1 l2�jl2 � V (��; �): (3.3)For eah  j, there must be � pairs (ji; li), i = 1; : : : ; �, suh thateither 1. �jili =  j or 2. ��jili =  j; (3.4)and the equivalent mapping must hold for eah � j. Then, if the ation is to remaininvariant under the transformation to the new �elds,Q ji ;lili = � Qj for alternative 1 in (3.4)�Qj for alternative 2 in (3.4);the sign being due to the antiommutative property of the Grassmannian �elds.All entries of Q o�-diagonal in the l-indies onstitute external �elds favoring onepossible symmetry breaking. In the BCS example, this is the pairing �eld �k. ByWik's theorem, the inverse of ��1Q is the bare Green's funtion G 0 of the physialsystem under onsideration. Under this inversion, the o�-diagonal external �eldsturn into anomalous bare propagators.As another example of suh a transformation and the introdution of an exter-nal �eld, in (2.7) the additional index is used to { depending on its value { addor not add a momentum Q = (�; �; : : : ) to the momentum index of the original�eld. This introdues proesses whih do not onserve momentum into the ation,breaking translational symmetry. 35



3 Deriving the renormalization group sheme3.2 Introduing the uto�In the following derivation of the ow equations for the one-partile irreduible(1PI) verties, we follow Salmhofer and Honerkamp (2001) and Meden (2005). Weintrodue a real parameter � into our ation by substituting Q withQ � := Q =�(�); (3.5)where �(�) is a funtion of the indies j; l1; l2 of Q and the division in (3.5) isomponent-wise. � must be di�erentiable in the ontinuous parameters of Q andin �. Furthermore, there must be a �i 2 R for whih the physial system S�is solvable, i.e. the vertex funtions are known, and a �f with �(�f) � 1, i.e.S� = S. These onditions allow for numerous hoies of � with various physialinterpretations (see, for example, Enss (2005), setion 4.2). Some problems an besimpli�ed signi�antly by hosing a suitable uto� funtion, as we see in hapter5.3.3 Generating funtionalsOur aim is to alulate the anomalous self-energy and the e�etive interation.The generating funtional for these funtions is the e�etive ation, for whih weknow no expliit form in terms of mirosopi parameters but whih is related tothe generating funtional W for the (onneted) Green's funtions by a Legen-dre transformation. Therefore, we �rst pass from the uto�-dependent partitionfuntion Z� to W� by introduing Grassmannian soure �elds �; ��:expW(�; ��) = Z D(��; �)detQ =� exp ��S(��; �) + (��; �) + (��; �)� : (3.6)We no longer expliitly denote the uto� dependene for readability. We introduethe �eld expetation values in the presene of the soures,J := ��W��� (�; ��); �J := �W�� (�; ��) (3.7)as well as their inverses �(J; �J) and ��(J; �J). The e�etive ation�(J; �J) = �W ��(J; �J); ��(J; �J)�� � �J; �(J; �J)�� ���(J; �J); J� (3.8)is the generating funtional of the one-partile irreduible vertex funtions m (seeNegele and Orland (1998)).3.4 The ow equation for the e�etive ationIn this setion, we derive a ow equation for the e�etive ation � through a owequation for the generating funtional W of the onneted Green's funtions. �36



3.4 The ow equation for the e�etive ationandW are related through (3.8), whih we di�erentiate with respet to � to obtain_� = ���W (�; ��)� ( _�; ��W (�; ��))� ( _��; ���W (�; ��))� ( �J; _�)� ( _��; J);where we have omitted (J; �J) for readability. Employing (3.7), we see that allterms but the �rst on the right-hand side anel and �nd _� = ���W(�; ��). Hene,we an obtain a ow equation for � from a ow equation for W. We thus take thepartial derivative of (3.6) with respet to �, obtaining��W expW (3.9)from the left-hand side, again omitting parameters for brevity. Di�erentiating thenormalization fator on the right-hand side yields�� 1det(Q =�) = � 1(det(Q =�))2 �� expTr ln (Q =�)= � 1det(Q =�)Tr� _Q Q �1� : (3.10)Finally, we di�erentiate the exponential:� 1� Z D(��; �)det(Q =�) (��; _Q �)e�S(��;�)+(��;�)+(��;�)=� 1� Z D(��; �)det(Q =�) (��; _Q ���)e�S(��;�)+(��;�)+(��;�)=� 1� (��; _Q ���) exp(W)=� 1� �(��W; _Q ���W) + Tr( _Q �����W)� exp(W): (3.11)Note that in (3.11), the produt _Q �����W is a matrix produt, where the indiesof the seond term are given by the parameters of the soure �elds in the partialderivatives. We ombine (3.9), (3.10), and (3.11) into��W = �1� ��Tr � _Q Q �1�+ (��W; _Q ���W) + Tr( _Q �����W)� : (3.12)To eliminate W in favor of �, we replae the seond term with �( �J; _Q J)aording to (3.7). For the third term, we need two additional relations, whih wederive in the following. For the �rst relation, we di�erentiate (3.8) with respet tothe �eld expetation values J; �J :�J� =� (�J�; ��W(�; ��))� (�J ��; ���W(�; ��))+ � �J; �J��� (�J ��; J) + ��= ��;� �J� =� �; (3.13)37



3 Deriving the renormalization group shemeThe anellations are due to (3.7). For the seond relation, we di�erentiate (3.7)with respet to J and �J and obtain1I =� (�J� �� ���W + �J �� ��� ���W)1I = � �J� �� ��W + � �J �� ��� ��W0 =� (� �J� �� ���W + � �J �� ��� ���W)0 = �J� �� ��W + �J �� ��� ��W: (3.14)Using (3.13), we rewrite our seond relation (3.14) as�� �J�J � �J� �J�J�J �J� �J��| {z }=:V � ����� ������������ ����� �W = 1I: (3.15)This allows us to replae the seond derivative of W in (3.12) with the upper left(or { up to a sign { the lower right) entry of V�1 to obtain the ow equation_� = 1� ��Tr � _Q Q �1�� ( �J; _Q J)� Tr( _Q (V�1)11)� : (3.16)3.5 The ow equations for the 1PI vertex fun-tionsBy expanding (3.16) in the �eld expetation values J; �J and omparing oeÆients,we derive ow equations for the 1PI vertex funtions m. First, we expand thee�etive ation in the �eld expetation values:�(J; �J) =Xm=0 XX1:::X2m m(X1; : : : ; X2m)(m!)2 �J(X1) : : : �J(Xm)J(Xm+1) : : : J(X2m);(3.17)where the indies Xi omprise both index types known from (3.3). We hoose mantisymmetri under permutations of the �rst m arguments and of the seond marguments. This makes the expansion (3.17) unambiguous. Plugging (3.17) into(3.15) while setting � = �� = 0 and J = �J = 0 yieldsG = ��11 : (3.18)Our strategy is to plug (3.17) into (3.16) and ompare the oeÆients of mono-mials in J; �J on both sides of the equation, but this is non-trivial due to the matrixinversion in (3.16). To study this inversion, we �rst notie that an equal number ofJ and �J arise in eah term of (3.17), sine our ation (3.2) ontains only monomialswith an equal number of � and ��. This argument an be understood by pituringperturbation theory diagrams for the vertex funtions: All bare vertex funtionshave an even number of external legs, and every onnetion between two vertex38



3.5 The ow equations for the 1PI vertex funtionsfuntions makes two legs internal. (3.15) thus implies that terms onstant in J; �Jappear only on the diagonal of V:V = ��1 00 1�| {z }=:V0 + � ~� �2�J��2J� �~�T�| {z }=:~V : (3.19)Note that~�(Y1; Y2) =Xm=1 XX1;:::;X2mm+1(Y1; X1; : : : ; Xm; Y2; Xm+1; : : : ; X2m)(m!)2�J(X1) : : : �J(Xm)J(Xm+1) : : : J(X2m) (3.20)by the produt rule and the antisymmetry of the vertex funtions m. Likewise,we �nd(�J�J�) (Y1; Y2) =Xm=1 XX1;:::;X2mm+1(X1; : : : ; Xm+1; Y1; Y2; Xm+2; : : : ; X2m)(m� 1)!(m + 1)!�J(X1) : : : �J(Xm+1)J(Xm+2) : : : J(X2m); (3.21)and a very similar formula for � �J� �J�. The seond matrix ~V of (3.19) therefore onlyontains vertex funtions with m � 2. We expand V�1 into a geometri series:V�1 = V�10 �1I + ~VV�10 + (~VV�10 )2 + (~VV�10 )3 + : : :� ; (3.22)with ~VV�10 = � ~�G �� �J� �J�G�J�J�G ~�TG � ; (3.23)where we have used (3.18). By (3.12) and (3.15), we only need to onsider theupper left entry of V�1.As a onrete �rst example, we onstrut the ontribution of order zero in J; �J .Sine �11 = �G by (3.18), we obtainTr� _Q �11 � = Tr� _Q G 1G � def= �Tr �S1� ; (3.24)where we have de�ned the single-sale propagator S. The name is motivated by itsliving on only the uto� energy sale � when the limit of a sharp momentum shelluto� is onsidered. This an be seen by plugging �(�) = �(j�kj � �) into (3.5)and taking the sale derivative to obtain the Æ-distribution. Considering (3.24), weobserve that the last term is the simplest ase of a linear tree of vertex funtions onneted by full propagators G and losed by onvolution with the single-sale39



3 Deriving the renormalization group shemepropagator S. Combining (3.24) and (3.16), we �nd the full ow equation for 0:_0 = 1�Tr� _Q (Q �1� � G )�= �1�Tr� _�� �� � �(1I� �Q �1�)�1��= �1�Tr� _��� ��Q �1� + (�Q �1�)2 + : : : ��= Tr� _���G � (3.25)where we have used (3.5) and the Dyson equation� 1 = G �1 = 1�Q � � (3.26)for the seond equality, employed geometri series expansion for the third andgeometri series ontration for the fourth equality.The tree onept is illustrated further by onsidering as a seond example termsof seond order in J; �J arising from the seond term V�10 ~VV�10 in (3.22). The upperleft omponent of this term is ��11 ~��11 = �G ~�G . Keeping only the oeÆientof the seond-order monomial in J; �J leaves� XX1;X2;Y1;Y2 G (�; Y1)2(Y1; X1; Y2; X2) �J(X1)J(X2)G (Y2 ; �); (3.27)where the bullets are plaeholders for the indies of G ~�G . We plug this into (3.16)to obtain _1 = 1� �� _Q + Tr(S2)� : (3.28)Employing the Dyson equation (3.26), we attain the ow equation_� = 1�Tr(S2) (3.29)for the self-energy �. Diagramatially, this an be expressed as
where the plaement of the arrows is given by the struture of (3.27). We see that~VV�10 ontributes to the ow equation of m a tadpole diagram in whih m+1 islosed by a single-sale propagator S. 40



3.5 The ow equations for the 1PI vertex funtionsThe ow equation for 2 is thus given by a tadpole diagram losing 3 and thediagrams arising from inserting the third term of (3.22) into (3.16). The upperleft omponent of this third term readsG ~�G ~�G � G �2�J�G �2J�G : (3.30)Keeping only the terms of fourth order in �J; J , we obtain_2(�1; �2; �3; �4)= 4�XXi �2(X1; �1; X2; �3)G (X2 ; X3)2(X3; �2; X4; �4)�142(X1; X2; �3; �4)G (X2 ; X3)2(�1; �2; X3; X4)�S(X4; X1)+O(3): (3.31)The disrepany in the ombinatorial prefators of the two terms arises from theombinatorial disrepany between (3.20) and (3.21). The antisymmetry of 2 ispreserved in the seond term of (3.31), but the �rst one needs to be antisym-metrized before or during the integration of the ow equation. The diagrammatiform of (3.31) is
In eah seond-order diagram, the single-sale propagator S an be put on anyinternal line due to the yli property of the trae. We see that (3.30) ontributesbubble diagrams to the ow of m.We present onstrution rules for the right-hand side of the ow equation form. These are derived from the struture of (3.23) and (3.22) as well as from theombinatorial fators in (3.20) and (3.21), as an be seen from the examples above.The diagrams on the right-hand side of the ow equation for m are onstrutedin the following way.1. Form all linear trees with 2m+2 external legs by onneting vertex funtionsm with full Green's funtions G .2. Close these trees with a single-sale propagator S so that a one-partile irre-duible diagram is formed.The diagrams are evaluated by forming matrix produts of m for the verties andG for the lines and traing over the external indies of the resulting onvolution.For the ombinatorial fators, 41



3 Deriving the renormalization group sheme� a 2m-vertex by itself inurs a fator (m!)�2.� a 2m-vertex within a linear tree inurs{ a fator ((m� 1)!)�2 if its internal legs are antiparallel.{ a fator ((m� 2)!m!)�1 if its external legs are pointing out of the dia-gram.{ a fator �((m� 2)!m!)�1 if its external legs are pointing into itself.As the last step, the right-hand side must be antisymmetrized.As an example, we draw the ow equation for 3:

The last term onstitutes a feed-bak of 4 on the ow of 3. The ow equa-tions for all m form a hierarhy in whih a given level feeds bak on the levelabove through a tadpole diagram arising from the seond term in (3.22). Whilethe author knows no method whih extrats physial information from the wholehierarhy, trunations yield approximations for whih rigorous error estimates anbe obtained (Salmhofer and Honerkamp (2001)). We present the trunation whihwe employ in the remainder of this work in the next setion.3.6 The Katanin trunationIn this setion, following Katanin (2004), we trunate the in�nite hierarhy of owequations derived in 3.5. There are two key advantages to Katanin's approahin omparison to the usual zeroing of 6 (see Zanhi and Shulz (1998); Halboth(1999); Halboth and Metzner (2000); Halboth and Metzner (2000); Zanhi and42



3.6 The Katanin trunationShulz (2000); Salmhofer and Honerkamp (2001); Rohe (2005); Enss (2005); Fuet al. (2006)). First, the approximate ow equations it delivers are exat up tothird order in the quarti part of the ation (3.2), and thus ideally suited for thetreatment of physial problems with two-partile interations. Seond, a furtherapproximation brings the approximate ow equations into a form that is treatableand still reprodues the exat solutions of the mean-�eld models introdued inhapter 2 and setion 5.1. Treatable here means that the usual divergene of theow of 2, whih has previously been used as a signpost for symmetry breaking,an be irumvented. The fRG for the two-partile irreduible vertex funtionshas similar advantages for mean-�eld models (Dupuis (2005)).We study the ow equation for 3 up to third order in 2. The only diagramwe have to treat is
where we have omitted the arrows for brevity. We rewrite the single-sale propa-gator S= �G _Q G = �G ( _G �1 + _�)G = _G � G _�G (3.32)to isolate the dependene on _G . Plugging (3.32) into the above diagram yields
where the seond diagram is of fourth order in 2 as an be seen by plugging in theow equation for �, (3.29). The seond diagram is therefore subsequently ignored.Up to order three in 2, the �rst diagram is the sale derivative of
as an be seen diagrammatially by taking into aount that _2 is of order two in2 aording to (3.31). This implies that in our approximation 3 is given by theabove triangle diagram.We diagrammatially plug our result for 3 into the ow equation (3.31) for2. We observe that in the absene of arrows, there are two topologially distintways to lose the diagram with a single-sale propagator S:43



3 Deriving the renormalization group sheme

We �rst onsider the seond \panting-dog" diagram, where we disern the tadpolediagram from (3.29) in the dog's tongue. Substituting _�, we exploit (3.32) toombine the resulting diagram with the loop diagrams from the ow equation for2, (3.31), to obtain
Seondly, we study the �rst \dog-snout" diagram, whih onsists of two loopsoverlapping in the dog's brow. In hapter 2 and setion 5.1, we see that diagramswith overlapping loops vanish in the thermodynami limit for mean-�eld models.Furthermore, the dog-snout diagram is of third order in 2, and therefore lessimportant in a weak-oupling ontext than the panting-dog diagram, whih turnedout to ontribute on the seond order of 2. We ignore the dog snout's ontributionin the remainder of this work. The ow equations whih we employ are

Solving these ow equations yields the exat self-energy and e�etive interationin the thermodynami limit for any model with only two-partile interations forwhih the dog-snout diagram vanishes. We study an example both analytiallyand numerially in hapter 4. In addition, in the presene of only two-partileinterations, the orretions to the right-hand side of these ow equations are ofthird order in the interation strength (Salmhofer et al. (2004)). Furthermore,the ful�llment of Ward identities in the ow is systematially improved by thismodi�ation (Katanin (2004)). 44



Chapter 4Charge-density wave:renormalization-group approah
4.1 Seond-order phase transitions4.1.1 Renormalization group setupWe apply the one-partile irreduible (1PI) funtional renormalization group (fRG)sheme introdued in hapter 3 to the redued harge-density-wave model (2.4) athalf �lling of setion 2.1.1. The 1PI sheme is desribed by Salmhofer and Hon-erkamp (2001); Wetterih (1993) and is here employed in the version suggested byKatanin (2004), as derived in setion 3.6. In this version, the di�erential equationsfor the self-energy and e�etive interation onstitute a losed system. The speialstruture of the interation in (2.4) allows us to further simplify the equations. Inontrast to the Bardeen-Cooper-Shrie�er (BCS) ow studied by Salmhofer et al.(2004), no anomalous e�etive interations are generated in our ase. We ver-ify analytially and numerially that the fRG reprodues the resummation resultsfrom setions 2.1.2 and 2.1.3.Following setion 3.2, we introdue a uto� funtion�(�) = � (j�j � �) : (4.1)In our alulations, all modes satisfying j�j > � have been integrated out. Thee�etive interation and self-energy at this sale an thus be interpreted as param-eters of an e�etive theory for a redued system with smaller bandwidth. We startthe ow at �i =W , where 2W is our system's bandwidth and all modes have yetto be integrated out. We integrate the ow down to �f = 0, as we see from (4.1)that �(�f) � 1. To analytially implement this proedure, we introdue �(�;�)as a plaeholder for any uto� funtion, whih shall have range [0; 1℄, assume thevalue 1=2 when � = �, approah 0 when reduing � below � and 1 when inreasing� above �. We replae Q (�) by Q (�)=�(�;�) as in (3.5), suppressing low-energymodes in the �eld integral and rendering the self-energy and e�etive interationsale-dependent. 45



4 Charge-density wave: renormalization-group approahThe replaement of G S in the ow (3.31) of the e�etive interation by _G G (seesetion 3.6) is ruial for our ability to follow the ow down to � = 0. This is be-ause in the original version of the fRG, the ow of the e�etive interation divergesbefore all modes are integrated out. In the Katanin version of the 1PI sheme,the exat hierarhy of RG di�erential equations with the exeption of the �rstequation is written using only full four-point funtions, full propagators and sale-di�erentiated full propagators on the right-hand sides. The di�erential equationsfor the self-energy and the four-point funtion thus onstitute a losed system. Inpartiular, the ontribution to the ow of the four-point funtion whih involvesthe six-point funtion (see the diagrammati equation on page 41) is partiallytaken into aount in the Katanin sheme by diagrams involving only four-pointfuntions and full or sale-di�erentiated full propagators, respetively. The partwith overlapping loops { the dog-snout diagram of setion 3.6 { of this ontribu-tion vanishes for the speial struture of the interation and the thermodynamilimit onsidered here. The remaining part of this ontribution is taken into a-ount by the replaement of the single-sale propagator by the sale-di�erentiatedfull propagator. We use the diagrammati onventions from setion 2.1.2, wherea hathed retangle denotes the e�etive interation V , a hathed irle denotesthe anomalous self-energy �i:a:, and bold lines denote full propagators. We intro-due the additional onvention that straight lines denote �-di�erentiation of allentities rossed by the line. The graphial form of the fRG di�erential equationsaording to these onventions is as shown in Fig. 4.1. The right-hand side of the
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Figure 4.1: The hierarhy of ow equations for the self-energy and the e�etiveinterationow equation for the self-energy only ontains the o�-diagonal (anomalous) partof the single-sale propagator S due to the restrited form of the interation. Thisis disussed in the ontext of the derivation of the gap equation (2.9) in 2.1.2.In the ow of the e�etive interation (right part of Fig. 4.1), the summa-tion over the Nambu indies of the internal lines inludes normal and anomalouspropagators. Analogously to the perturbation expansion in setion 2.1.2, in thethermodynami limit N ! 1 the speial momentum struture of the initial in-teration is onserved by the RG ow of the e�etive interation. At half �ll-ing, no new e�etive interations with di�erent external legs are generated. Thisis in ontrast to the BCS pairing model (Bardeen et al. (1957)), where U(1)-symmetry-breaking e�etive interations with four inoming or four outgoing legsare generated (Salmhofer et al. (2004)). For the BCS ase, linear ombinationsof normal and anomalous e�etive interations are identi�ed with amplitude andphase modes. These names stem from the thermodynami potential as a fun-tion of the order parameter. Rotating the � = 0 graph of Fig. 2.6 around the46



4.1 Seond-order phase transitions
MF-axis, we obtain a shape that has been desribed as a Mexian hat but alsoas a Bordeaux bottle bottom, see Fig. 4.2. This is a thermodynami potential
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Figure 4.2: The Bordeaux-bottle bottom or Mexian hat thermodynami potentialshape typial for the breaking of a ontinuous symmetry. It sports a ontinuumof energetially degenerate minima of the thermodynami potential. Seleting oneof these minima breaks the symmetry. The shape implies the existene of twodistint types of exitations, one radial and one angular in the order parameterplane. They are alled amplitude and phase mode, respetively. Phase modes anbe exited with arbitrarily small energy sine there is no energy slope to overomeas for the amplitude mode. Thus, the phase mode is massless while the amplitudemode is massive away from ritiality (Salmhofer et al. (2004)), a fat that is alsoobserved when studying bosoni theories (Strak et al. (2007)). In the half-�lledCDW model, there is no phase mode, as the order parameter has no phase. Inthis ase, the e�etive interation behaves like the amplitude mode of the BCSproblem.4.1.2 Renormalization group and resummationWe prove in the following that the equations in Fig. 2.1 are equivalent to the fRGequations in Fig. 4.1. We observe that the uto� hanges neither the struture ofthe bare interation nor the onservation laws of the bare propagator. Therefore,the arguments of setion 2.1.2 that lead to the resummations of the perturbationexpansions for the self-energy and the e�etive interation also hold for the ut-o�system. We take the derivative with respet to � of the diagrammati form of theBethe-Salpeter equation for the ut-o� system:47



4 Charge-density wave: renormalization-group approah
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We identify the sum of loop hains that we resummed in the derivation of Fig. 4.1(b)and thus reover the right-hand side of the ow equation for the e�etive inter-ation. Sine the solution of the orresponding initial-value problem is unique,the solution of the fRG ow equations satis�es the Bethe-Salpeter equation fromwhih we started. This demonstrates the equivalene of the e�etive interationow equation and the Bethe-Salpeter equation.We now study the ow equation for the self-energy. Replaing the e�etiveinteration on the right-hand side with the right-hand side of the diagrammatiform of the Bethe-Salpeter equation yields:
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�= = +S S SThe ow equation for the self-energy allows us to substitute the uto�-di�erentia-ted self-energy for the tadpole part of the diagram inluding the e�etive intera-tion:
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�= S+Symbolially, the loops of the two tadpole diagrams read:G � dd��� G � G � dd�G �10 � G = �G � dd�G �1� G = dd�G : (4.2)This shows that the fRG ow equation for the self-energy is the derivative of thegap equation for the system inluding the uto�. Sine the solution of the orre-sponding initial-value problem is unique, the solution of the fRG ow equations isalso a solution of the gap equation. This onludes the proofs of the equivaleneof the resummation and the fRG equations for the ase of the Hamiltonian (2.5).48



4.1 Seond-order phase transitions4.1.3 Flow equations at �nite temperatureTo evaluate the diagrams of Fig. 4.1, we derive the uto� Green's funtion from(2.7) and (2.8):G � = �(�)!2n + "2 + (�(�)��)2 ��i!n � " ��(�)����(�)�� �i!n + "� : (4.3)In omparison with (2.8), the self-energy is replaed by its sale-dependent variantmultiplied by �, and the Green's funtion as a whole is multiplied by �.(4.3) enables us to write down the ow equation for the e�etive interationV . To that end, we �rst note the ompliation that the momentum argumentsof the propagators in the right loop of Fig. 4.1 di�er by Q, just as in the mean-�eld ase 2.1. However, this only hanges the sign of the bare energies " writtenon the diagonal of (4.3), as � is onstant in momentum and � ontains only themodulus of ". This eases the evaluation of the diagram whih proeeds mainly bymultiplying G k and G k+Q and traing, whih yields_V = V 2TXk;!n ��� 2�2(!2n + "2 + �2�2)2 ��!2n � "2 + �2�2� ;where we have suppressed the dependene on � in the notation. Seond, we notethat the Matsubara sum an be done analytially using (B.3) and (B.4) to obtain_V = 2V 2 ���Xk �2�(�"2 + �2�2) �tanh4E3 � 18TE2 osh2��tanh4E � 18T osh2� ; (4.4)where we have suppressed the arguments of the hyperboli funtions, all of whihare E=2T , as well as momentum arguments, all of whih are k, and reyledE to abbreviate p"2 + �2�2. This form of the ow equation already suÆesfor numerial evaluation purposes, and we will exploit this in the ontext of theHubbard model in setion 5.3.To further our analytial understanding of the ow equations, we evaluate thesale derivative of the integral in (4.4). To make optimal use of the sharp uto�(4.1), we employ Morris' lemma (3.19) of Morris (1994) in the following way. We�rst rewrite the integration over momenta as an integration over energiesXk ! Z W�W d"�(");whih is unproblemati as k appears only as "k in (4.4). Seond, we note that the�-dependene of the right-hand side of (4.4) stems from � and �. This impliesthat the �-derivative of the integrand I is split into two parts:Z W�W d"�(") _I = Z W�W d"�(")� _��I�� + _��I���49



4 Charge-density wave: renormalization-group approahwhih an be rewritten asZ W�W d"�(") _I = Z W�W d"�(")�Ij�=1Æ(j"j � �) + _��I���aording to Morris' lemma. Third, we plug in the expression for I from (4.4) toobtain_V =�0V 2( � �2E ��2E2 tanh+�2�2E osh�2�����"=�� Z W� d"E � _�E2 �3"2E2 �tanh��E2 osh�2�+ �2�2 tanh2 osh2�)������=1 ; (4.5)where we have assumed a onstant density of states to remove dimensionalitye�ets. This is the ow equation we will use for our numerial and analytialanalysis. Note that � has been eliminated from the expression along with oneintegration in omparison to (4.4).We turn to the ow equation for the order parameter and anomalous self-energy�. Its diagrammati form is drawn in the left part of Fig. 4.1. The algebrai om-plexity of the equation an be signi�antly redued by employing Morris' lemma(3.19) of Morris (1994). To this end, we study the single-sale propagator S ap-pearing in the diagram. We note that_��G�� = _� ���(Q � ��x)�1= (Q � ��x)�1 _��Q�� (Q � ��x)�1= �G _Q G= S: (4.6)(4.6) failitates the use of Morris' lemma in the presene of single-sale propagators.We ontinue with our study of the self-energy ow by inluding the external �eld�ext in � as its initial ondition. Evaluating the diagrams of Fig. 4.1, we again sup-press sale and frequeny dependene in the notation and write E :=p"2 + �2�2,where � is the spetral gap aused by the symmetry breaking. The fRG di�erentialequation reads _� = V ��0E tanh����"=��=1 ; (4.7)where we have swithed from momentum integration to energy shell integration,used (4.6), and assumed a at density of states �0 in order to remove dimensionalitye�ets. If we hoose �ext = 0, � remains zero for all sales. Then only the�rst term in (4.5) remains, and the ow will diverge at a nonzero sale �. Wewould thus be neither able to integrate over all sales nor ompare our results to50



4.1 Seond-order phase transitionsthe resummation of setion 2.1.2. We therefore always study the RG equationsfor a �nite �ext, usually 10�4t. We show in the following that this irumventsthe divergene of the e�etive interation while still enabling us to approximatearbitrarily well the exat mean-�eld results without expliit symmetry breaking inthe temperature range determined in setion 2.1.3.4.1.4 Renormalization group at zero temperatureWe �rst onsider zero temperature, T = 0. In this ase, it is easier to writedown the analytial expressions, the roles of the di�erent right-hand side termsare easily identi�able, and the value of the e�etive interation at � = 0 is nearlyindependent of �ext, as � is larger than the double width at half maximum of thee�etive interation ow peak (see Fig. 4.3, lower part).In the limit T ! 0, (4.5) and (4.7) beome� dd�V = V 2 �2�0p�2 + �23 � 3V 2���d�d��Z W� d� �2�0E5 ; (4.8)� dd�� = V��0 1p�2 + �2 : (4.9)(4.8) and (4.9) an be integrated numerially. The typial shapes of these owsare exhibited in Fig. 4.3. We see that the divergene of the e�etive interation isregularized by the external symmetry-breaking �eld, whih is taken into aountas the initial value of �. Hene, we an integrate out all modes of the fermionispetrum. The e�etive interation in the CDW problem behaves analogously tothe linear ombination of normal and anomalous e�etive interations in the BCSproblem (Salmhofer et al. (2004)) whih drives the ow of the order parameter.This agrees with our interpretation of the e�etive interation as an amplitudemode. The �-dependene of � around the sale where V peaks approahes a kinkfor �ext ! 0. The graph of �(�) resembles the graph of �(T ) from Fig. 2.2,showing that temperature ats in a similar fashion as the uto� in this system.The main di�erene between the graphs is that �(T ! 0) approahes a onstantfuntion while �(�! 0) is linear.The impat of the self-energy feedbak on the RG ow an be thoroughlyunderstood by analyzing the terms appearing in (4.8) and (4.9). Bear in mind thatwe think of the ow as progressing from larger to smaller values of �, i.e. fromright to left in our plots. We �rst onsider the limit � = 0. Now, the self-energy nolonger ows while the e�etive interation ows aording to�dV=d� / V 2=�. Forany positive V0, the solution of the orresponding initial value problem is singular,showing that at T = 0 symmetry is broken for all repulsive initial interations.An arbitrarily small initial symmetry-breaking �eld immediately has dramationsequenes: As soon as V begins to inrease strongly, so does the self-energy dueto the oupled e�ets of a large V and a bak-feeding � on the RHS of (4.9). Theseond term on the RHS of (4.8) is negative. It orresponds to a orretion of theow by the modes whih are integrated out at the urrent sale, whih is neessary51



4 Charge-density wave: renormalization-group approah
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4.1 Seond-order phase transitionsbeause these modes' self-energy is hanging in the ow even at sales where themodes themselves are integrated out. It beomes large as the slope of � exeeds �itself, while the positive �rst term is damped by an e�etive �2=�3-dependene assoon as � beomes muh larger than �. The e�etive interation is hene pulledbak down. It never reahes zero sine the negative seond term on the RHS of (4.8)beomes proportional to V 3 while the positive �rst term beomes proportional toV 2 (d�=d� is O(V )). This implies that the self-energy never dereases. The twoterms on the RHS of (4.8) thus approah mutual anellation, ausing V and inturn �d�=d� to be almost onstant in � (the ontributions from � on the RHSof (4.9) anel when �� �).The behavior desribed above remains qualitatively the same at �nite temper-atures, as long as these are below the double width at half maximum of V �ext(T ).This is illustrated by the lowest-temperature urve of the lower panel of Fig. 4.4.The shape of V (�) is very similar to the shape of V (T ) in the lower part of Fig. 2.2,thus illustrating again that temperature has an e�et omparable to that of an en-ergy or momentum uto�. The �nite temperature ase is disussed in detail in thenext setion.4.1.5 Renormalization group ows at �nite temperaturesWe now turn to the analysis of the �nite temperature fRG equations (4.5) and(4.7). Due to their more involved nature, the analysis is largely numeri. We�nd the same behavior as alulated using the onventional resummation methodsapplied in setion 2.1.2. The initial symmetry-breaking �eld plays the same ruialrole as in the zero-temperature ase. We use a oupling of V0 = 2t in the following.The upper plot of Fig. 4.4 shows how the ows of the self-energy atten if thetemperature inreases beyond T � 0:1t. Above T, �(� = 0) vanishes in the limit�ext ! 0. The ow of the e�etive interation is shown in the lower panel ofFig. 4.4. The graph of the ow is pushed to the left with inreasing temperature,its shape remaining largely unhanged. As the ow's maximum approahes zero,the �nal value of the e�etive interation inreases until the maximum has reahed� = 0. This orresponds to the behavior of the e�etive interation on the low-temperature side of Fig. 2.2 (lower part). For even higher temperatures, the �nalvalue of the e�etive interation dereases, orresponding to the behavior on thehigh-temperature side of Fig. 2.2.The lower part of Fig. 4.5 shows that �(T ) saturates quikly far below theritial temperature. It also illustrates the motion of the e�etive interation owmaximum, whih is pushed to lower sales by an inrease in temperature as de-sribed above. It approahes zero in a linear fashion with inreasing temperature,in ontrast to �(T ! T), whih exhibits a square-root behavior.We are furthermore interested in the dependene on �ext of the ow of theself-energy at �nite temperatures. As we see below, this raises the question of themethod's extensibility to non-mean-�eld models, whih is undertaken in setion 5.This question arises due to the interplay of the orretness of the trunation andthe neessary limit of vanishing external �eld, whih is studied below. In ontrast53



4 Charge-density wave: renormalization-group approah
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4.1 Seond-order phase transitions
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4 Charge-density wave: renormalization-group approahto the resummation treatment ase (see the upper part of Fig. 2.2), we annotset �ext to zero as the e�etive interation would diverge before the ow reahes�f = 0. However, the upper part of Fig. 4.3 implies that lim�ext!0 ��ext(�) existsand is approahed in a ontinuous fashion. For T > 0, if �ext � �(�f)=100, thereis a learly observable steep rise of �(T ) (see the upper part of Fig. 4.4) whihwould permit a fairly preise determination of T even in models with omplexitybeyond what is studied here. However, note that for suh �ext, the e�etiveinteration reahes maximal values � 100t in the ow. This is muh larger thanthe bandwidth of low-dimensional systems (see, e.g., the lower part of Fig. 4.6 forthe temperature evolution). The agreement between fRG and mean-�eld resultsin spite of these large e�etive interations underlines that the trunated fRG isexat for our model.Close to the T -dependent ritial sale �, the e�etive interation reahes amaximum whose height depends singularly on �ext (see Fig. 4.6, lower panel). Anumerial analysis shows that the maximal e�etive interation is / 1=��ext with� � 2=3. The values for the maximal e�etive interation an be read o� for T = 0in Fig. 4.3 (bottom) and for �nite temperatures in the lower part of Fig. 4.6. Fora diret appliation of the method to non-mean-�eld models, the maximum of thee�etive interation must be restrited to smaller values. Otherwise, the small-interation approximation from setion 3.6 is not justi�ed. However, a larger �extentails that the rise of ��=0(T ) at T gets smeared out strongly (see Fig. 4.5 (upperpart) and Fig. 2.2 (upper part)). The upper part of Fig. 4.6 shows that far belowT, the relative error ��=� is linear in �ext. At the highest onsidered �ext, itis already of the order of 0:1 while V (�) is still � 10t. This implies that themethod we employ ould be improved in the losely intertwined areas of e�etiveinteration suppression and gap value auray, as will be attempted in the nextsetion.4.2 First-order phase transitionsIn this setion, we desribe and apply an extension of the one-partile irreduible(1PI) fermioni funtional renormalization group (fRG) sheme as formalized bySalmhofer and Honerkamp (2001) permitting the study of �rst-order phase tran-sitions and hysteresis phenomena. We show how this onstitutes an improvementof the apabilities of the method as introdued in hapter 3 and applied in setion4.1. The extension also allows us to irumvent the rise of large interations atintermediate sales whih has plagued the approah so far while preserving theauray of the results for the gap. As above, we start from the ow equationsas suggested by Katanin (2004), derived in setion 3.6, studied for the ase of thebreaking of a ontinuous symmetry in Salmhofer et al. (2004) and for the ase ofthe breaking of a disrete symmetry in setion 4.1, see Gersh et al. (2005). Weuse the interation ow by Honerkamp et al. (2004), whih permits the fruitfulemployment of ounterterms as introdued in setion 4.2.1. We show ows for�rst-order (setion 4.2.2) and seond-order (setion 4.2.3) phase transitions, dis-56



4.2 First-order phase transitions
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4 Charge-density wave: renormalization-group approahussing the e�et of the ounterterm on possible approximations. We also studythe e�et of an external �eld on the ow, identifying a riterion for unphysialstarting points.4.2.1 Renormalization group setup with ountertermThe basi setup of a 1PI fRG alulation with Katanin's modi�ation is outlinedin 4.1.1 and for the redued BCS model by Salmhofer et al. (2004). To understandthe problem solved in the following, we onsider the order-parameter dependeneof the thermodynami potential 
 in the plot for � = 0 in Fig. 2.6. Followingthe lead of Salmhofer et al. (2004); Gersh et al. (2005), a small external �eldis inluded as the initial ondition for the order parameter in setion 4.1. Thisexternal �eld is relevant in Wilson's �xed-point piture (Wilson (1971a,b)), butdoes not appreiably hange the physis away from ritial sales. It biases the fRGow toward the thermodynami potential minimum at �nite �i:a: (see the � = 0graph in Fig. 2.6), whih beomes the endpoint of the ow. This method is unableto deal with �rst-order phase transitions where the thermodynamially stable stateis separated from the symmetri state by an energy barrier. A thermodynamipotential as funtion of the order parameter illustrating this situation is depited inthe plot for � = �0:2t in Fig. 2.6. Beause the external �eld must be small, the owalways veers toward the symmetri minimum at zero order parameter, followingthe gradient of the thermodynami potential. Other minima are inaessible, evenif their thermodynami potentials are smaller. Furthermore, the method annotbe used to study hysteresis e�ets appearing if systems exhibiting seond-orderphase transitions (see the graphs for � = 0 and � = �0:1t in Fig. 2.6) are plaedin an external �eld. The external �eld destroys the axis symmetry of 
(�i:a:), butalways biases the ow toward the global minimum of the thermodynami potential,making it impossible to study the metastable on�guration. Thus, the hallengeenountered here is to set up an fRG sheme with a parameter that allows theseletion of any stable or metastable on�guration as the endpoint of the ow.The basi idea that will be exploited in the following is to inlude in the al-ulation a ounterterm � of arbitrary strength that anels an equally strongexternal �eld �i as introdued in (2.14), but only at the end of the ow. In thefRG alulation, the external �eld is taken into aount as the initial value of theorder parameter �, while the ounterterm � is inluded in the bare propagator.Shematially, the matrix Green's funtion of the system readsG �1 = Q 0 +�� � �; (4.10)where � is the uto� funtion and Q 0 is the inverse bare propagator withoutounterterm. For any degree of freedom with � 6= 1, ounterterm and self-energydo not anel eah other. However, the speial ase � � 1 is approahed at theend of the fRG ow. Thus, the e�etive ation of the original symmetri model isreovered. 58



4.2 First-order phase transitionsWe �rst onsider the ase of � = ��(k) desribing the sharp momentum-shell uto� of onventional RG shemes (see Wilson (1971b, 1972); Wegner andHoughton (1973) and (4.1) of setion 4.1.1). In this ase, only momenta for whih��(k) = 1 are taken into aount in the RG ow. For these momenta, � and� anel exatly at the start of the ow, ausing � to remain stationary. Thisis due to the right-hand side of the 1PI ow equation for the order parameterbeing proportional to the anomalous part of the Green's funtion (ompare (4.7))whih vanishes if � and � anel. This argument generalizes to the ase ofmultiple order parameters, as an be seen by onsidering the adjugate matrix of theinverse Green's funtion, whih is shematially similar to (4.10) but with multipledi�erent ounterterms and self-energies in the spirit of setion 3.1. Consequently,� and � also anel at all stages of the ow. In the ase of a seond-ordertransition, the fRG diverges at a � 6= �f as no gap opens in the spetrum andsmall energy denominators appear. In the ase of a �rst-order transition, theow remains �nite, inorretly suggesting that the symmetri phase is stable. Weonlude that we have to employ a softer uto� funtion.Next, we onsider the softest possible uto� funtion, provided by the intera-tion ow introdued by Honerkamp et al. (2004). It works by linearly turning onthe interation with the ow parameter (note the similarity to the treatment byMahan (2000), from page 148) while turning on the ounterterm with the squareroot of the ow parameter. By resaling the �elds, this is found to be equivalentto employing a uto� funtion � whih is onstant at all momenta, zero at thestart of the ow, one at the end of the ow, and� = p� (4.11)in between. With this, the ounterterm and the external �eld in (4.10) anel onlyat the end of the ow, and all on�gurations beome aessible, as is illustrated inthe following.We prepare to evaluate the ow equation diagrams in Fig. 4.1. For a generaluto� funtion �, we obtain from (2.16) the ut-o� Green's funtion G for theHamiltonian (2.14):G (i!n ;k) = ��(i!n + �)2 + E2k ��i!n � "k � � ��� +���� +� �i!n + "k � �� ; (4.12)where Ek = p"k +�2e� and �e� = �� � �. The external �eld �ext induing aharge-density wave as well as �i are to be absorbed in the initial ondition for�. To failitate the use of Morris' lemma (3.19) of Morris (1994), we prepare toemploy S= _��G�� (see (4.6)) by alulating�G�� (i!n;k) = 1�(i!n + �)2 + E2k ��i!n � "k � � �����e������e� �i!n + "k � ��� 2��e��(�(i!n + �)2 + E2k)2 ��i!n � "k � � ��e���e� �i!n + "k � �� : (4.13)59



4 Charge-density wave: renormalization-group approahTo evaluate the tadpole of Fig. 4.1, we sum an o�-diagonal entry of (4.13) over theMatsubara frequenies !n:TX!n �G 12�� =(�����e�) 12E �f(E�)� f(E+)�+ ��2e�� 12E2 � 1E �f(E�)� f(E+)�+ f 0(E+) + f 0(E�)�= f(E�)� f(E+)2E ���� "2E2 ��e��+ f 0(E+) + f 0(E�)2E2 ���2e� ; (4.14)where f(E) = (exp(E=T ) + 1)�1 is the Fermi distribution and (B.14) and (B.15)are used in the �rst equality. Traing over the momentum degrees of freedom, mul-tiplying with the e�etive interation and diagrammati fators as well as pluggingin � = p� in aordane with (4.11), we obtain the ow equation_� = �V Z ddk(2�)d 14p� �f(E�)� f(E+)E �p�� "2E2 +�e���f 0(E�) + f 0(E+)E2 p���2e�� : (4.15)Turning to the loop diagram of Fig. 4.1, we trae over the Nambu index ofthe produt of G (i!n ;k) and G (i!n ;k +Q), making use of the nesting ondition"k = �"k+Q to obtain2�2(�(i!n + �)2 + E2k)2 �(i!n + "k + �)(i!n � "k + �) + �2e��= �2�2!2n + (E+ + E�)i!n � E+E� + 4�2�2e�(!2n + (E+ + E�)i!n � E+E�)2 :Performing the Matsubara sum aording to (B.14) and (B.15) yields2�2 ��f(E�)� f(E+)2E "2E2 + f 0(E�) + f 0(E+)2E2 �2e�� : (4.16)To omplete the evaluation of the loop diagram of Fig. 4.1, we substitute p� for �,di�erentiate (4.16) with respet to �, multiply with V 2, trae over the momentumdegrees of freedom and inlude diagrammati fators to obtain_V = �V 2 Z ddk(2�)d 12E2 (f(E�)� f(E+)E "2 3� _EE � 1! +�f 0(E�) + f 0(E+)� 3"2� _EE +�2e�!� �f 00(E�) + f 00(E+)���2e� _E) : (4.17)60



4.2 First-order phase transitionsWe furthermore need to alulate the thermodynami potential using the fun-tional renormalization group. From the ow equation (3.25) for 0 and the relation
i:a: = T0 for the thermodynami potential 
, we onstrut_
 = �T2 Tr�� _��G � : (4.18)If the ow is started at the thermodynami potential of the non-interating system,the full thermodynami potential is reovered. Sine we will always do so, we havewritten 
 instead of 
i:a: in (4.18). Evaluating the Matsubara sums, (4.18) reads_
 = Z ddk(2�)d��e� f(E�)� f(E+)4Ep� : (4.19)(4.15), (4.17), and (4.19) onstitute a losed system of integro-di�erential equationswhih an be numerially solved given appropriate initial onditions.4.2.2 Flows for �rst-order phase transitionsWe onsider a system exhibiting a �rst-order phase transition at a transition tem-perature Tt. Our example is (2.14) at � = 0:245t, whih exhibits a �rst-order phasetransition in temperature aording to the phase diagram in Fig. 2.3. Studyingows below Tt (see Fig. 4.7), we notie two strong attrators. By its lower ther-modynami potential at the end of the ow, one of them an be identi�ed withthe stable, symmetry-broken on�guration. The values for the order parameter,e�etive interation, and thermodynami potential di�erene reprodue the exatmean-�eld results. Note that the �nal values do not depend on the magnitude ofthe ounterterm. This means that the dependene of the results on the external�eld, known from setions 2.1.3, 2.2.3, 4.1.4, and 4.1.5 as well as Gersh et al.(2005); Dupuis (2005); Salmhofer et al. (2004), is eliminated. This is an advantageof the proedure introdued here.Considering Fig. 4.7(a), we see that there is a separatrix between the e�etivegap ows to the metastable on�guration and the ows to the stable on�guration.The distanes between the gap ows for di�erent ounterterm values dereasemonotonially with inreasing uto�. The ows ontrat onto a single point. Inmodels more ompliated than (2.14), this ontration will no longer lead to asingle point due to the approximations whih beome neessary, but the strengthof the ontration an be interpreted as a measure of the approximations' quality.Here, those ows whih exhibit weak hanges of the e�etive interation awayfrom � = 1 and weak hanges of the order parameter lose to � = 1 are mostpromising for determining order parameters in more ompliated models. We seethat the ows losest to the separatrix are not optimal ows sine �(�) still showsa large slope at � = 1. This �nal slope is smallest for a ounterterm of roughlytwie the magnitude of the order parameter. Suh a ow would yield an exellentapproximation of the order parameter, even if it were to be stopped at � = 0:75.Considering the ows of the e�etive interation in diagram 4.7(b), we do not�nd a separatrix as in (a). Instead, the ows orresponding to the ones lose to the61



4 Charge-density wave: renormalization-group approah
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Figure 4.7: Flows for V0 = 2t at � = 0:245t, T = 0:01t < Tt, and � inreasingfrom 0:01t to 1:01t in inrements of 0:1t. Broken lines denote ows onverging tothe stable symmetry-broken on�guration; solid lines denote ows onverging tothe metastable symmetri on�guration. The ow starts at � = 0 and �nishes at� = 1. (a) E�etive gap �e� . � for eah graph an be read o� at the y-axis. (b)E�etive interation V . Flows onverging at 10:14t pass through greater valueswith inreasing ounter-term. Flows onverging at 4:43t behave inversely. ()Thermodynami potential 
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4.2 First-order phase transitionsseparatrix in (a) develop a shoulder whih beomes a maximum for ertain valuesof the ounterterm (for an example of suh a maximum, see diagram 4.8(b)). Theows exhibiting the strongest e�etive interations orrespond to the ows givingthe worst approximations for the order parameter if terminated prematurely. Thisentails for appliations to models where this method is not exat that arefullyhosing the ounterterm an signi�antly simplify the alulation and improve theauray of the results.The ows of the thermodynami potential shown in 4.7() again exhibit sepa-ratrix behaviour. This is in ontrast to the ows above Tt. For the thermodynamipotential, the ows losest to the separatrix yield the best approximations if ter-minated prematurely. However, it is apparent from 4.7() that the ow must beontinued until the external �eld is ompletely ompensated by the ountertermto obtain reliable results for the thermodynami potential.Flows above Tt are illustrated in Fig. 4.8. Again, we learly disern two attra-tors. In this ase, however, the thermodynami potential ows of the symmetry-broken-phase attrator ross the thermodynami potential ows of the symmetri-phase attrator. The symmetri phase is therefore thermodynamially more stable.Apart from this, the ows behave similarly as those below Tt. For inonvenientlyhosen ounterterms, the maxima in the e�etive-interation ows are learly vis-ible in 4.8(b). Nevertheless, the ows reprodue the exat mean-�eld results.4.2.3 Counterterm ows for seond-order phase transitionsThe ows for seond-order phase transitions behave similarly to the ows for �rst-order phase transitions, but only a single attrator appears, as an be seen inFig. 4.9(a). Fig. 4.9(b) shows that it is possible to suppress the e�etive inter-ation during the ow by hosing a large ounterterm. Approximations for theorder parameter an be obtained by stopping the ow before � reahes 1. Thequality of suh an approximation depends on the ounterterm hosen. Again,the best approximation an be obtained by hosing a ounterterm of twie thenon-approximated value of the gap.4.2.4 External �eldIf the external �eld �ext in (2.14) is zero, the half-�lled system below T ex-hibits two degenerate stable on�gurations (loal minima of the thermodynamipotential) distinguished by the sign of the order parameter. If �ext is non-zero,this degeneray is lifted. The fRG sheme outlined above allows us to selet theendpoint of the ow independently of the external �eld by appropriately settingthe ounterterm, in ontrast to the sheme from setion 4.1. The ows toward themetastable on�guration are shown in Fig. 4.10 (broken lines). As the external �eldis inreased toward a ritial value, the order parameter for the metastable on-�guration vanishes and the orresponding loal minimum of the thermodynamipotential disappears. Beyond this ritial value, the ows for negative ounter-terms beome divergent as the e�etive gap reahes values lose to zero, exposing63



4 Charge-density wave: renormalization-group approah
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4.2 First-order phase transitions
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4 Charge-density wave: renormalization-group approahlow-energy modes. Suh a divergene an be used as an indiator for an adverselyhosen starting point. The ows for positive ounterterms (full lines in Fig. 4.10)always attain the stable solution. Calulating the ows as for Fig. 4.10, but fornegative values of the external �eld �ext, we obtain the hysteresis urve of Fig. 4.11.
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Chapter 5Attrative Hubbard modelThis hapter has three main goals. First, to study the inuene of the 3+1 anoma-lous e�etive interations arising when Cooper and forward sattering are presentin a model. To this end, a redued model ontaining only Cooper and forward sat-tering with zero momentum transfer is solved by a resummation of perturbationtheory in setion 5.1, whih yields analytial formulas for all e�etive interations.The same resummation is applied as an approximation to the attrative Hubbardmodel in two dimensions in setion 5.2, allowing us to study the impat of the3 + 1 e�etive interation numerially and graphially. The Cooper and forwardsattering model is more general in the sense that it permits adjusting the strengthof the forward sattering independently of the strength of the Cooper satteringand ontains a more general spin struture of the interation. However, the Hub-bard model is more general in the sense that its interation ontains satteringproesses with arbitrary momentum transfer. Turning to the fRG treatment, wedisuss in setion 5.3 the momentum-shell ows of the 3 + 1 anomalous e�etiveinterations for the attrative Hubbard model. The seond goal is to study fRGows in the Katanin trunation for a non-mean-�eld model. This is undertaken insetions 5.3.3 and 5.3.4, omparing the momentum-shell ow with the interationow. The third goal is to �nd results for the superonduting order parameterin the attrative Hubbard model at zero temperature in two dimensions. This isaomplished in setion 5.3.5, where we obtain values omparable to the literatureby employing the interation-ow proedure.5.1 Resummation approah to Cooper and for-ward satteringWe ommene our study of the 3+ 1 e�etive interations by studying the impatof the inlusion of forward sattering proesses on a redued BCS model for su-perondutivity. In redued BCS models where the eletrons only interat in theCooper hannel, anomalous e�etive interations whih have four inoming or fouroutgoing legs appear in addition to the regular verties with two inoming andtwo outgoing legs. As we shall see, the additional inlusion of forward sattering67



5 Attrative Hubbard modelgives rise to anomalous two-partile e�etive interations sporting three inomingor outgoing legs. Origin, strength, and impat of these sattering proesses aredisussed below.5.1.1 Fermions with Cooper and forward satteringTo restrit ourselves to the study of a system ontaining only Cooper and forwardsattering, we start from the HamiltonianH =Xk Xs "kyksks (5.1)� 1N Xk1k2 V0(k1k2)y�k2#yk2"k1"�k1# (5.2)� 12N Xk1k2Xs1;s2 U0(k1k2)yk1s1k1s1yk2s2k2s2 (5.3)+Xk ��ext(k)y�k#yk" +��ext(k)k"�k#� : (5.4) and y are fermioni annihilation and reation operators, respetively, (5.1) isa kineti energy term, (5.2) is a singlet-hannel Cooper sattering term, (5.3)desribes spin-independent forward sattering with zero momentum transfer, and(5.4) desribes the oupling of an external pairing �eld to the system. (5.2) and(5.3) thus form the interation part of the Hamiltonian.Passing to a funtional integral formulation within the Matsubara formalism atnonzero temperature T as in (2.6) and (3.1), we obtain the grand anonial ationS =Xk Xs (i!n � �k) � ks ks (5.5)+ Xk1;k2 Xn1;n2;n3 V0(k1k2) � n1�k2# � n2k2" n3k1" n4�k1# (5.6)+ Xk1;k2 Xn1;n2;n3Xs1;s2 12U0(k1k2) � n1k1s1 n2k1s1 � n3k2s2 n4k2s2 (5.7)�Xk ��ext(k) � �k# � k" +��ext(k) k" �k#� ; (5.8)where n4 is hosen so that energy is onserved and  and � are the Grassmann�elds mathing  and y, respetively. The sign is hosen suh that �S appears inthe exponent of the funtional integral for the partition sum, as in (3.1) and (2.6).We substitute ��k+ = � k"; �k+ =  k"; �k� = � �k#; ��k� =  �k#; (5.9)similarly to the general sheme (3.4) outlined in setion 3.1, and obtain for the68



5.1 Resummation approah to Cooper and forward satteringinteration parts (5.6) and (5.7) of the ation:�Xk1;k2 Xn1;n2;n3(V0(k1k2)��k1� ��k2+�k1+�k2�+XN1=�;N2=�N1N2 12U0(k1k2)��k1N1 ��k2N2�k1N1�k2N2) ; (5.10)where we have suppressed the Matsubara frequenies in the notation for brevity.Note that beause we have absorbed the spin degree of freedom into the Nambuindex, there is no multiple-ounting of degrees of freedom, implying that the om-pensating fator � from setion 3.1 is 1.To simplify the neessary antisymmetrization of the vertex, we rewrite (5.10)by furnishing eah � with its own momentum/energy and Nambu index, whihneessitates introduing additional sums and Kroneker deltas. We organize thefour Nambu indies into one multiindex N, write (����) := ÆN1�ÆN2�ÆN3�ÆN4�,and abbreviate �kiNi = �i as well as ��kiNi = ��i. Thereby, (5.10) beomes:� Xk1:::k4;NÆn1+n2;n3+n4Æk1k3Æk2k4 ��1 ��2�3�4��V0(k1k2)(�++�) + 12U0(k1k2)N1N2ÆN1N3ÆN2N4�= �14 Xk1:::k4;NÆn1+n2;n3+n4 ��1 ��2�3�4�f[V0(k1k2)((�++�) + (+��+))+U0(k1k2)N1N2ÆN1N3ÆN2N4℄ Æk1k3Æk2k4� [V0(k1k2)((+� +�) + (� +�+))+U0(k1k2)N1N2ÆN1N4ÆN2N3℄ Æk1k4Æk2k3g :We introdue the bare four-point funtion,V0(1234) = Æn1+n2;n3+n4f [V0(k1k2)((� ++�) + (+��+))+U0(k1k2)N1N2ÆN1N3ÆN2N4℄ Æk1k3Æk2k4� [V0(k1k2)((+� +�) + (� +�+))+U0(k1k2)N1N2ÆN1N4ÆN2N3 ℄ Æk1k4Æk2k3g ; (5.11)where we have written i instead of kiNi in the argument of V0 . For the alulationof the Æp1p3-part of the e�etive interation, the bare four-point funtion is mostonveniently written in matrix form,V0(k1k2) =0BB� U0(k1k2) 0 0 �U0(k1k2)0 0 V0(k1k2) 00 V0(k1k2) 0 0�U0(k1k2) 0 0 U0(k1k2) 1CCA (5.12)69



5 Attrative Hubbard modelwhere momentum and energy onservation are shifted into the diagrammatis, N1is paired with N3, N2 with N4, and the basef(��); (�+); (+�); (++)gillustrated in Fig. 5.7 is used. The notation (��) is de�ned in analogy to theparentheses with four signs introdued above. A ontribution proportional to Æk1k2is negleted as it lives on a set of degrees of freedom with dimensionality reduedin omparison to the set of degrees of freedom on whih V0 lives. Note that therank of V0 is three, whih makes it possible to redue the number of equationsdetermining the e�etive interations as is done in setion 5.1.4.Rewritten using the substitution (5.9), the quadrati parts (5.5) and (5.8) ofthe ation akin to the quadrati parts (5.1) and (5.4) of the Hamiltonian an bewritten in a form amenable to the usual treatment of funtional integrations viaWik's theorem (Negele and Orland (1998) page 75):Xk1k2;N1N2 ��1�2Æk1k28><>: [i!n1 � �k1 ℄| {z }=Q ++ (++) + [i!n1 + ��k1 ℄| {z }=Q �� (��)��ext(k1)| {z }=�Q +� (+�)���ext(k1)| {z }=�Q �+ (�+)9>=>; :This identi�es the matrix Q from the formalism taking into aount symmetrybreaking introdued in setion 3.1, see (3.3). In order to �nd an expliit form ofthe full propagator, we determine the normal and anomalous self-energy in thenext setion.5.1.2 Gap equationCommanding the diagrammatially simple antisymmetrized bare four-point fun-tion (5.11)/(5.12), in this setion we show by a diagrammati resummation thatmean-�eld theory is exat in the thermodynami limit for the Hamiltonian spei-�ed by (5.1)+(5.2)+(5.3)+(5.4). We an employ Hugenholtz diagrammatis (seeNegele and Orland (1998) hapter 2.3), as there are no anomalous expetationvalues in the �-�elds. Propagators anomalous in the  -�elds are normal in the�-�elds: h�+ ���i = h  i. Diagrammatially, the perturbation expansion for theself-energy is shown in the �rst row of Fig. 5.1. It onsists of a sum of all diagramsobtained by onneting bubbles via bare interation verties. This is due to thefollowing argument, whih proeeds in analogy to the one in setion 2.1.2. An over-lap between two loops removes one integration over all degrees of freedom due tothe redued momentum struture of the interation (5.2)+(5.3). This diminishesthe ontribution of suh a diagram by a fator proportional to the inverse systemsize in omparison with the diagrams atually drawn here. The diagrams whihontribute in leading order in the system size an thus be resummed as shown in70



5.1 Resummation approah to Cooper and forward sattering
Figure 5.1: Perturbation expansion for the self-energy. Small irles represent bareinterations, lines with arrows represent bare propagators, bold lines with arrowsrepresent full propagators, and �lled irles represent the self-energy.the seond row of Fig. 5.1. Translating the last diagram into the language of the  -�elds via the substitution (5.9), we �nd self-onsistent Hartree-Fok theory, whihwe draw in Fig. 5.2. The Fok part ontributes only in the symmetry-broken
Figure 5.2: The diagrams of the right-hand side of the self-onsisteny equationfor the self-energy in the language of the  -�eldsase, yielding anomalous self-energies whih lead to the anomalous propagatorsharateristi for the symmetry-broken phase. In setion 5.1.3, we see how theseanomalous propagators lead to anomalous e�etive interations.To further our ontrol of the self-energy of the system given by the Hamiltonian(5.1)+(5.2)+(5.3)+(5.4), we study the diagrammati equations obtained abovesymbolially. Evaluating the diagrams of Fig. 5.1 while suppressing onvergene-generating fators in the notation leads to the gap equation�N1N2(p) = � Xk;M1;M2 [ ÆN1N2ÆM1M2M2N1U0(pk)+V0(pk)(ÆN1�ÆM2+ÆN2+ÆM1� + ÆN1+ÆM2�ÆN2�ÆM1+)℄ G M1M2(k);where volume and temperature fators are absorbed into the summation symbolPas we ontinue to do in the following. The sign stems from the fermion loop. Notethat for the one-partile Green's funtion as well as the self-energy, the �rst indexrefers to an outgoing line, while the seond refers to an ingoing line. Expliitlydistinguishing the ase o�-diagonal in Nambu spae from the ase diagonal inNambu spae and inserting onvergene-generating fators where neessary, weobtain two distint equations,���(p) = �Xk U0(pk) hG ++(k)ei!n0+ � G ��(k)ei!n0�i ;���(p) = �Xk V0(pk)G ��(k):71



5 Attrative Hubbard modelWriting �(p) := ��ext(p)� �+�(p), �(p) := �++(p), andE(k) :=p(�k + �(k))2 + j�(k)j2;furthermore assuming �k = ��k, and using the base f(+); (�)g de�ned in analogyto the ases for two and four Nambu indies, we �ndG (k) = 1!2n + E(k)2 ��i!n � �k � �(k) �(k)��(k) �i!n + �k + �(k)� (5.13)=: �G(k) F (k)F �(k) H(k)� (5.14)and �(p) = �Xk U0(kp)ei!n0+(�i!n � �k � �(k)) + ei!n0�(i!n � �k � �(k))!2n + E(k)2�(p) = ��ext(p) +Xk V0(pk) �(k)!2n + E(k)2 :The self-energies do not depend on Matsubara frequeny sine V0, U0, and �extdo not depend on Matsubara frequeny. The Matsubara sums an therefore beperformed analytially aording to (B.6), (B.12), and (B.13). The result is�(p) = ��ext(p) +Xk V0(pk)�(k) tanh(�Ek=2)2Ek (5.15)�(p) = �Xk U0(pk) �1� �k + �(k)Ek tanh(�Ek=2)� : (5.16)Setting U0 = 0, (5.15) beomes the superonduting gap equation (see Mahan(2000), page 641). Setting V0 = 0, (5.16) turns into�(p) = �2Xk U0(pk)f(�k + �(k)); (5.17)where f(E) is the usual Fermi funtion. (5.17) is the Hartree self-energy equationappropiate for the interation term (5.3). This onludes the setion on the gapequations, in whih an expliit form of the full propagator was found and self-onsisteny equations determining the superonduting order parameter as well asthe normal self-energy were derived.5.1.3 Bethe-Salpeter equationIn this setion, we determine the e�etive interation by a resummation simi-lar in fashion to the resummation for the harge-density wave (CDW) presentedin Fig. 2.1 of setion 2.1.2. We start by determining the struture of the per-turbation expansion for the e�etive interation and studying the hange in the72



5.1 Resummation approah to Cooper and forward sattering
Figure 5.3: Bethe-Salpeter equation for the four-point funtion. Filled irlesrepresent e�etive four-point funtions, empty irles represent bare four-pointfuntions, lines whih have both ends terminating in a vertex represent full propa-gators, other lines are deorations. Note that the �rst two indies refer to inominglines, while the seond pair refers to outgoing lines.diagrammatis aused by the substitution (5.9). In the thermodynami limit, theperturbation expansion for the e�etive interation inludes only bubble diagramswhih an be resummed into a Bethe-Salpeter equation as shown in �gure 5.3.This is due to an argument whih is analogous to the arguments presented for theCDW in setion 2.1.2 and for the superonduting gap equation in setion 5.1.2.The ontributions from all other diagrams, notably partile-partile diagrams in�-�elds, vanish. Translating the diagrams into the language of the  -�elds via thesubstitution (5.9), we �nd that we are resumming diagrams of the type exempli�edin �gure 5.4. Our alulation inludes hains of bubbles (�rst example), ladders, , ,Figure 5.4: Examples of the  -�eld diagrams resummed by the �-�eld Bethe-Salpeter equation(seond example), and onneting parts (third example), forming diagrams suhas the fourth example. Adding arrows to the onneting part as in Fig. 5.5, we �nde�etive interations with an uneven number of inoming arrows in the symmetry-broken phase. These are taken into aount automatially in the Bethe-Salpeter
Figure 5.5: Symmetry-broken phase diagram in  -�eld language generating ane�etive interation with three inoming arrowsequation in the �-formalism.Referring to the enlarged version Fig. 5.6 of the loop diagram from Fig. 5.3,73



5 Attrative Hubbard model
Figure 5.6: Blow-up of the bubble diagram from the right-hand side of the equationin Fig. 5.3.we an write down the Bethe-Salpeter equation symbolially:VN(p1 : : : p4) =V0N(p1 : : : p4)�Xk;M VN1M3N3M4(p1; p2 + k; p3; p4 + k)G M3M2(p2 + k)�G M1M4(p4 + k)V0M1N2M2N4(p4 + k; p2; p2 + k; p4); (5.18)where the momentum onservation of V0 is used to simplify the expression. Sinepropagators are momentum and energy onserving, the full four-point funtion hasthe same momentum and energy struture as the bare four-point funtion. How-ever, the Nambu struture an be di�erent, sine propagators do not neessarilyonserve the Nambu index. This is how e�etive interations with an odd numberof inoming arrows are generated in the �-formalism. We neglet the seond ma-trix from (5.12) to alulate the Æp1p3 part of V and denote the Nambu indies inpairs to make the matrix struture as in Fig. 5.7 visible, obtainingVN1N3;N2N4(p1p2) =V0 N1N3;N2N4(p1p2)�Xq;M V0M1M2;N2N4(kp2)G M1M4(k)G M3M2(k)VN1N3;M3M4(p1k)def=Xk;M V0M1M2;N2N4(kp2)LM3M4;M1M2(k)VN1N3;M3M4(p1k):(5.19)(5.19) beomes V(p1p2) = V0(p1p2)�Xk V(p1k)L(k)V0(kp2): (5.20)This determines the e�etive interation impliitly. The expliit evaluation is thetopi of the setions below.5.1.4 Redundanies of VIn this setion, the redundanies of V are analyzed to failitate its expliit deter-mination below. To arry out the analysis, we study (5.20) omponent-wise. To74



5.1 Resummation approah to Cooper and forward sattering

Figure 5.7: A diagram for every entry of V.this end, we onsider the entries of V(k1k2) diagramatially. Their diagrammatirepresentations are de�ned in Fig. 5.7. A detailed study of LV0 from (5.20) is ex-pedient to further our understanding of the Bethe-Salpeter equation. Negletingmomentum/energy parameters for brevity and using H2 = G�2, we �nd
LV0 = 0BB� G�2 HF � FH FF �F �H F �2 GH GF �HF HG F 2 FGF �F F �G GF G2 1CCAV0

= 0BB��U0(FF � �G�2) V0FH V0F �H �U0(G�2 � FF �)�U0F �(G�H) V0GH V0F �2 �U0F �(H �G)�U0F (G�H) V0F 2 V0GH �U0F (H �G)�U0(G2 � F �F ) V0FG V0F �G �U0(FF � �G2)1CCA : (5.21)
From (5.13), we �nd (G�H) 2 R and GH 2 R for � 2 R. With this, we see bymultiplying the matrix from Fig. 5.7 with (5.21) and studying (5.20) omponent-wise that the relations from Fig. 5.8 hold. The �rst matrix from (5.12), onstitutingthe part of the bare interation relevant for this alulation, also ful�lls the relationsfrom Fig. 5.8. With the shorthands introdued in Fig. 5.8, the e�etive interationmatrix thus simpli�es to

V = 0BB� U� 
�2 
2 �U�
1 W � V 
1�
�1 V � W 
�1�U� �
�2 �
2 U 1CCA ; (5.22)75



5 Attrative Hubbard model

Figure 5.8: Relations between the omponents of Vwhere parameter-free notation is used for brevity. To remove as many redundaniesas possible while preserving the struture of (5.20), we introdueVnew := 0� U 
2 
�2�
1 V W ��
�1 W V 1A ; (5.23)LnewVnew0:=0�G2 +G�2 � 2FF � F �(H �G) F (H �G)F (H �G) HG F 2F �(H �G) F �2 HG 1A0�U0 0 00 V0 00 0 V01A (5.24)=0�U0(G2 +G�2 � FF �) V0F �(H �G) V0F (H �G)U0F (H �G) V0HG V0F 2U0F �(H �G) V0F �2 V0HG 1A : (5.25)Multiplying (5.23) by (5.25), we obtain the same equations as by multiplying (5.22)by (5.21). This means that the matrix equationVnew(p1p2) = Vnew0 (p1p2)�Xk Vnew(p1k)Lnew (k)Vnew0 (kp2) (5.26)is equivalent to (5.20). In onlusion, the redundanies of V allow us to redue the16 salar equations of (5.20) to the nine salar equations of (5.26).5.1.5 Momentum-independent satteringIt is possible to solve (5.26) expliitly if we assume that the bare interationsU0(p1p2) and V0(p1p2) lak momentum-dependene. In this ase, (5.26) beomesVnew = Vnew0 � VnewXk Lnew(k)Vnew0 def= Vnew0 � VnewLnewP Vnew0 (5.27)) Vnew = Vnew0 (1 + LnewP Vnew0 )�1 = (Vnew0 �1 + LnewP )�1 (5.28)76



5.1 Resummation approah to Cooper and forward satteringWe learn from (5.24) that, in omponents, the inverse of the RHS of (5.28) reads0�G2 +G�2 � 2FF � + (U0)�1 F �(H �G) F (H �G)F (H �G) HG+ V �10 F 2F �(H �G) F �2 HG+ V �10 1A ; (5.29)where, for eah pair of propagators, summation over all possible values of theiromitted momentum and energy arguments is impliit. We hoose the followingabbreviations for larity: K := F (H �G);L=V0 := HG+ V �10 ;M=U0 := G2 +G�2 � 2FF � + (U0)�1:(5.29) then reads 0�M=U0 K� KK L=V0 F 2K� F �2 L=V01A : (5.30)L=V0 and M=U0 are not optimal as abbreviations; however, this notation keepsthe bare ouplings in plain sight and makes it easier to study speial ases lateron. In order to invert (5.29), we alulate the ofator matrix:0� (L=V0)2 � F �2F 2 �(KL=V0 �K�F 2) KF �2 �K�L=V0�(K�L=V0 � F �2K) ML=U0V0 �KK� �(F �2M=U0 �K�2)K�F 2 �KL=V0 �(F 2M=U0 �K2) ML=U0V0 �KK� 1A ; (5.31)whih is the transpose of the adjugate matrix adj(5.29). We note from (5.15) that�(p) is independent of momentum if V0(p1p2) is; and that therefore, F 2F �2 =jF 2j2 and K�F = KF � in this setion. Reading o�det(V�1)=((L=V0)2 � jF 2j2)M=U0 �K(K�L=V0 � F �2K) +K�(K�F 2 �KL=V0)=(L=V0 � jF 2j)(L=V0 + jF 2j)M=U0 � 2jKj2(L=V0 � jF 2j)=(L=V0 � jF 2j) �(L=V0 + jF 2j)M=U0 � 2jKj2� (5.32)from (5.30) and (5.31), we identify the Goldstone boson's divergene-reating in-uene by writing out the �rst fator of (5.32):L=V0 � jF 2j = GH + V �10 � jF 2j= V �10 �Xq 1!2n + E2q= ��extV0� : (5.33)See the de�nition of the matrix Green's funtion (5.13) and (5.14) for the seondand the gap equation (5.15) for the seond step.77



5 Attrative Hubbard modelWe onlude the inversion of (5.29) by ombining the adjugate matrix (see(5.31) and following text), the determinant (5.32), and the relation (5.33) throughthe matrix inversion formula A �1 = 1det A adj(A )to obtain:U = L=V0 + jF 2j(L=V0 + jF 2j)M=U0 � 2jKj2 = U0 L + V0jF 2j(L+ V0jF 2j)M � 2U0V0jKj2
1 = K(L=V0 + jF 2j)M=U0 � 2jKj2 = U0V0 K(L + V0jF 2j)M � 2U0V0jKj2
2 = �K�(L=V0 + jF 2j)M=U0 � 2jKj2 = U0V0 �K�(L + V0jF 2j)M � 2U0V0jKj2V = ��(ML=U0 � V0KK�)�ext [(L=V0 + jF 2j)M=U0 � 2jKj2℄ = V0 ��ext U0V0jKj2 �ML(L + V0jF 2j)M � 2U0V0jKj2W = V0�(F �2M=U0 �K�2)�ext [(L=V0 + jF 2j)M=U0 � 2jKj2℄ = V 20 ��ext F �2M � U0K�2(L+ V0jF 2j)M � 2U0V0jKj2We realize that 
1 and 
2 are �nite in the symmetry-broken phase beause theirnumerators remain �nite. This prevents us from negleting them in further alula-tions. Setting U0 = 0, U , 
1, and 
2 vanish as expeted, while the expressions for VandW turn into the usual random-phase approximation expressions for the normaland anomalous e�etive Cooper interation. This onludes the study of the modelombining Cooper with forward sattering de�ned by (5.1)+(5.2)+(5.3)+(5.4).5.2 Resummation approah to the attrative Hub-bard model5.2.1 HamiltonianIn this setion, we study the attrative Hubbard model in two dimensions employ-ing the approah developed in setions 5.1.1-5.1.3 as an approximation. formalismand method developed in the preeding setion 5.1 for a system inorporatingCooper and forward sattering. Our goals are to study the Nambu struture ofthe e�etive interation, to numerially gauge the impat of the e�etive inter-ations with an odd number of inoming legs, and to study the momentum andenergy dependene of the e�etive interation, analyzing olletive modes in theproess. The Hubbard Hamiltonian readsH =Xks �kyksks � U0N Xk1k2k3 yk1"k3"yk2#k1+k2�k3#: (5.34)We also add an external singlet-pairing �eld termXk ��ext(k)y�k#yk" +�?ext(k)k"�k#� ; (5.35)78



5.2 Resummation approah to the attrative Hubbard modelwhih is sent to zero after the alulations. The tight-binding dispersion relation�k = �2t(os kx + os ky)� 4t0 os kx os ky � � (5.36)inludes hopping between nearest neighbors with amplitude t and hopping be-tween next-nearest neighbors with amplitude t0. We pass to a funtional integralrepresentation (f. (5.5)-(5.8)) and employ the substitution (5.9) to obtainS =Xk ���k+ ��k��� i!n � �k ���ext(k)��ext(k) i!n + �k ���k+�k��+U0 Xk1k2k3 ��k1+ ��k3�k1�k2;��k3+��k2�; (5.37)where k = (i!n;k) and volume as well as temperature fators are impliitly on-tained in the summation symbol P, a pratie we also apply in the following.Antisymmetrizing the interation part yieldsU0X1:::4 Æk1+k2;k3+k4(ÆN1+ÆN2� � ÆN2+ÆN1�) (ÆN3+ÆN4� � ÆN4+ÆN3�)| {z }(++)(��)�(+�)(�+)�(�+)(+�)+(��)(++) ��1 ��2�3�4; (5.38)where i, if used as an index, is short for (kiNi), and we have exhanged 2 and 4in omparison with (5.37). As a matrix aording to the Nambu base from �gure5.7, the antisymmetrized bare interation readsU00BB�0 0 0 10 0 �1 00 �1 0 01 0 0 01CCA Æk1+k2;k3+k4: (5.39)5.2.2 Resummation approahWe employ the gap equation (5.15) as an approximation for the true superon-duting gap equation in the following. The diagonal self energy is absorbed inthe hemial potential, �! �� �. We employ the Bethe-Salpeter equation fromFig. 5.3 as it treats superondutivity and forward sattering, whih are the mostimportant sattering proesses at low temperatures (Metzner et al. (1998)). Theblow-up from Fig. 5.6 is shown for the Hubbard model in Fig. 5.9. Evaluating the
Figure 5.9: The loop diagram from �gure 5.6 for the Hubbard model79



5 Attrative Hubbard modeldiagrams yields the symboli Bethe-Salpeter equationU(1234) = U0(1234)� XqN 01:::M4UN1M2N3M1(p1; k; p3)�U0M4N2M3N4(k + p4 � p2; p2; k)G M1M4(k + p4 � p2)G M3M2(k); (5.40)where as a parameter, i = 1 : : : 4 is short for piNi. Through the introdution ofthe loop matrix LM2M1;M4M3(k; p) := G M1M4(k + p)G M3M2(k) (5.41)and by exploiting momentum and energy onservation p1 + p2 = p3 + p4 whilesetting p := p1 � p3, (5.40) an be rewritten asU(p1 : : : p4) = U0 �Xq U(p1 ; k; p3; k + p)L(k; p)U0 ; (5.42)where the Nambu indies of U and U0 are organized into pairs as in Fig. 5.7.U(p1 : : : p4) only depends on p in this approximation, as an be seen by solving forU. Finally, we obtain U(p) =  U�10 +Xq L(k; p)!�1 : (5.43)Using the symbols from (5.13),L = 0BB�HH HF � FH FF �F �H F �F � GH GF �HF HG FF FGF �F F �G GF GG1CCA ; (5.44)where for eah matrix entry it is understood that k + p is plugged into the �rstand k into the seond fator, implying that the order of the two propagators is�xed in this ase. Furthermore, a star in (5.44) implies that the omplex onjugatebe taken, but only of the gap amplitude in the numerator of the orrespondingpropagator.5.2.3 No Nambu rank redutionA simpli�ation as given by the relations in �gure 5.8 is not possible in the Hubbardmodel ase. This is beause the order of the propagators in the entries of L annotbe reversed due to their di�ering arguments and beause U0 is nonzero only onthe ounter-diagonal. We study this fat in more detail in the following.We �rst show whih simpli�ations still apply. WritingU = 0BB� X� 
3 
2 U�
�4 W � V 
1�
�1 V � W 
4U� �
�2 �
�3 X1CCA ; (5.45)80



5.2 Resummation approah to the attrative Hubbard modelwe see that our labels are onsistent with (5.42) by proeeding as in setion 5.1.4.The stars in (5.45) only imply to take the omplex onjugate of the gap amplitude.For (5.42) to redue to an equation for 3� 3 matries, there an only be threedistint entries in eah line of U: at least one entry must be expressible through oneof the others under sign reversal or omplex onjugation. We onsider the �rst lineof U. The inequality sign 6= in the following means inequality even if overall signsand imaginary-part signs are disregarded. Plugging U(k1 : : : k4) = U(k1 � k3) aswell as the loop matrix (5.44) into the resummation equation (5.42), we �nd thatX� 6= 
3 6= U 6= 
2 and X� 6= 
2 6= U 6= 
3. U 6= X follows from the presene ofa U0-term { due to the ounter-diagonal struture of the bare interation (5.39) {in the equation for U but not in the equation for X. 
2 6= 
3 is due to GH 6= HG,that is the non-ommutativity of the propagator produts in (5.44). We have thusshown that the �rst line of U annot be simpli�ed beause of the Nambu strutureof U0 and the �xed order of the propagators in L, substantiating our laim fromthis setion's �rst paragraph.5.2.4 Numerial setupTo obtain a deeper understanding of the struture of the e�etive interation, wesolve (5.43) numerially in the following. The Matsubara sums in (5.43) an beperformed analytially. This operation proeeds similarly for all omponents ofL, as the poles are the same in all ases. These poles are determined by thedenominator D := �(!n + �m)2 + E2k+p� �!2n + E2k�of the produts of Green's funtions (5.13) in the loop matrix L, where the sum-mation is over !n and k. Note that �m, as a di�erene between two fermioniMatsubara frequenies, is a bosoni Matsubara frequeny, �m 2 2�TZ. The de-nominator D an be fatorized intoD = [i(!n + �m) + Ep+k℄ [i(!n + �m)� Ep+k℄ [i!n + Ek℄ [i!n � Ek℄ :By the residue theorem, we obtainTX!n g(i!n)D = f(�i�m � Ep+k)g(�i�m � Ep+k)�2Ep+k(�i�m � Ep+k + Ek)(�i�m � Ek � Ep+k)+ f(�i�m + Ep+k)g(�i�m + Ep+k)2Ep+k(�i�m + Ep+k + Ek)(�i�m + Ep+k � Ek)+ f(�Eq)g(�Eq)�2Ek(i�m + Ep+k � Ek)(i�m � Ep+k � Ek)+ f(Eq)g(Eq)2Ek(i�m + Ep+k + Ek)(i�m � Ep+k + Ek) ; (5.46)where f(x) = (exp(x=T ) + 1)�1 is the Fermi distribution and g(x) is any smoothfuntion of order smaller than x3 for large x. Expliit expressions for the individual81



5 Attrative Hubbard modelbubbles are listed in appendix C. The remaining integration over the Brillouin zoneand the matrix inversion on the right-hand side of (5.43) are performed numerially.In the following, a system with t0 = t=6, � = �1:5t, U0 = 2t, �ext = 10�4t, andT = 0:035t is assumed. This hoie of parameters orresponds to an approximatelyquarter-�lled system far below its mean-�eld ritial temperature. We employ anexternal �eld �ext = 10�4t. This keeps the numeris well-behaved having noappreiable inuene away from p = 0.5.2.5 Numerial results: momentum spaeWe ommene by disussing the numerial results for the stati part, � = 0. Toprovide an overview, we plot in Fig. 5.10 and 5.11 the normal part V and the
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Figure 5.10: Momentum-dependene of the stati part of the normal Cooper-hannel e�etive interation V in units of tanomalous part W of the Cooper hannel e�etive interation (see (5.45)). Weare partiularly interested in the impat of the 
i on the e�etive interations.To gauge this impat, we study the di�erene between V alulated by fully solv-ing (5.43) and V alulated by setting all loops ombining normal and anomalouspropagators to zero. This is equivalent to setting the 
i to zero, beause besidesgenerating the 
i, these loops are only involved in the feedbak of the 
i onto theother e�etive interations. We abbreviate by Vwith 
 the normal Cooper-hannele�etive interation if the 
i are taken into aount, and by Vw=o 
 otherwise. Aplot of the di�ene relative to Vw=o 
 is shown in Fig. 5.12. The hange indued byinluding the 
i is smaller than 5% in magnitude and restrited to large and verysmall momenta. Only about a quarter of the available phase spae shows an ap-preiable hange in the magnitude of V . For very small momenta, the inlusion ofthe 
i suppresses V in magnitude, but only by 2%. Studying the large-momentumpart of Vwith 
 and Vw=o 
 plotted in Fig. 5.13 reveals that the inlusion of the 
i a-tually enhanes the magnitude of the normal Cooper hannel e�etive interation82



5.2 Resummation approah to the attrative Hubbard model
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Figure 5.11: Momentum-dependene of the stati part of the anomalous Cooper-hannel e�etive interation W in units of t
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Figure 5.14: Change of the anomalous Cooper hannel e�etive interation throughthe inlusion of the 
i, (Ww=o 
 �Wwith 
)=Ww=o 
by the inlusion of the 
i, espeially for large momenta along the Brillouin zonediagonal, while the suppression for very small momenta is only about 2%, as forV . Along the rystal axes, W hanges by up to 10%. The large hange along theBrillouin zone diagonal is due to the almost omplete suppression of the large-momentum W along the diagonal by the introdution of the 
i. This suppressionis learly seen in Fig. 5.15. It is notable that while V is enhaned by the 
i inertain parts of the Brillouin zone, W is everywhere suppressed or unhanged. It84



5.2 Resummation approah to the attrative Hubbard model
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Figure 5.15: Comparison ofWwith 
 (lower) and Ww=o 
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i on the energy-dependene of V andW , we onsider the p = 0 part of the vertex. The real and imaginary parts of thenormal V and anomalous Cooper verties W , both for the ase with and for thease without 
i, are plotted in �gure 5.18. As we disern from �gure 5.19, themaximum hange in the normal Cooper-hannel vertex upon inlusion of the 
i isalmost 30%. This maximum hange ours in the real part for �m = �2�T . The85
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5 Attrative Hubbard modelvertex for �m = 0 does not hange and neither does the imaginary part for any�m. (The value at �m = 0 in the left-hand graph of �gure 5.19 is due to numerialinauray.)Turning to the right-hand graph, we �nd that for the imaginary part of theanomalous Cooper hannel e�etive interation W , the e�et of inluding the 
iis negligible: Im(W ) vanishes always. The real part, however, while unhanged for�m = 0, is strongly suppressed for �m having �nite magnitude. This suppressiongrows with j�mj and attains almost 70% for the largest-magnitude Matsubara fre-queny onsidered here. This is due to Re(Wwith 
) approahing 0 muh faster thanRe(Ww=o 
) for large �m. Overall, the e�et of the 
i on the energy dependene ofthe normal and anomalous Cooper e�etive interation is sizable.Analyti expressions To omplete our study of the 
i's impat on the disper-sion relation for the olletive modes present in the symmetry-broken state, wesearh an approximate expression for the energy dependene of V and W . To thisend, we extend the expression (5.47) by adding to the denominator:��ext + �pjpj2 + ���2m +  (5.48)Fig. 5.20 shows the result of least-squares �tting (Levenberg (1944); Marquardt(1963)) (5.48) via �� to the numerial data for ReV and W . � was determined
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5.2 Resummation approah to the attrative Hubbard modelWe take the imaginary part of V into aount in our approximations by addingto the numerator of (5.48): � + �i�m�ext + �pjpj2 + ���2m + : (5.49)From Fig. 5.21, we learn that (5.49) �ts the data quite well. Numerial alulations
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Figure 5.21: Fitting (5.49) to Im(V ) � � 0:30t, values represented by red rossesalulated at a lower temperature for veri�ation purposesat muh lower temperature show that the Matsubara-frequeny dependene of Vand W does not hange at lower temperature. This implies that our alulationsare approximately equivalent to alulations at T = 0.5.2.7 Combinations of e�etive interationsIn general, it is onvenient to work with as small a number of divergent quantitiesas possible. Sine our alulations so far have shown that V � �W at p = �m = 0,we ombine V andW into V +W and V �W . This an be interpreted as separatingthe amplitude from the phase mode as disussed in setion 4.1.1. Only the phasemode shows the divergene for p = �m = 0, while the amplitude mode is massivein the symmetry-broken regime.Momentum dependene We analyze the momentum dependene of V � Wand V +W at �m = 0 as is done for V and W individually above. The amplitude-mode ontribution V +W is �tted to1�jpj2 + A + ; (5.50)89



5 Attrative Hubbard modelsee Fig. 5.22. The �t reprodues the numerially-alulated behavior. For small
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5.2 Resummation approah to the attrative Hubbard modelis interpreted as the amplitude mode, this presents a hallenge. We onsider theapproximation funtion t2�pjpj2 + ���2m + � + : (5.51)Contemplating the left-hand graph of �gure 5.24, we beome aware of a shoulder
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i. The study has provided an overview ofthe momentum, energy, and Nambu index dependene of the e�etive interation.Furthermore, we have learned that the inlusion of e�etive interations with anodd number of inwards-pointing legs leads to quantitative hanges in ertain ases.However, no qualitative di�erenes have beome apparent in our analysis. We notein partiular that the dispersion relation of the massless Goldstone mode is linearas expeted.5.3 Renormalization groupThe one-partile irreduible (1PI) sheme (setion 3) of the funtional renormaliza-tion group (fRG) is applied in the Katanin trunation (setion 3.6) to the attrativeHubbard model as given by the Hamiltonian (5.34). Due to the numerial om-plexity of the problem, the e�etive interations as well as the self-energy mustbe approximated. In the approximation hosen, we neglet the normal self-energyand assume the anomalous self-energy to be equal to its value at zero energy andthe e�etive interations to be equal to their value at zero energy for all energies.To take into aount the momentum dependene, the Brillouin zone is split intopathes, eah of whih is biseted by the Fermi surfae. All momenta in a given92



5.3 Renormalization grouppath are projeted onto the midpoint of the Fermi surfae in the same path.For symmetry-broken situations, the approximation for the energy dependene aswell as the plaement of the sampling points on the Fermi surfae orrespond toan overestimation of the e�etive interation strength. This leads to a divergeneof the ow if a momentum uto� with an insuÆiently strong external pairing�eld or an interation ow with an insuÆiently strong ounterterm is employed.The divergene problem an be remedied by employing the interation ow andinluding a ounterterm for the anomalous self-energy as exempli�ed for a reduedmodel in setion 4.2.5.3.1 Flow equationsIn this setion, we derive an expliit analyti form of the Katanin-trunated (seesetion 3.6) one-partile irreduible funtional renormalization group ow equa-tions (see setion 3.5) for the Hubbard model (5.34) inluding superondutivityaording to (5.9). To aomplish this, we need the expliit form of the Green'sfuntions. This an be obtained from the Green's funtion (5.13) by multiplyingboth self-energy omponents �, � as well as the Green's funtion by the uto�funtion �. It readsG (k) = �(k)!2n + E(k)2 ��i!n � �k � �(k)�(k) �(k)�(k)���(k) �i!n + �k + �(k)�(k)� (5.54)=: �G(k) F (k)F �(k) H(k)� ; (5.55)where E(k) =p(�k + �(k)�(k))2 + j�(k)�(k)j2:In order to obtain an analyti expression treatable with numerial methods,we onsider the ow equation
derived in setion 3. In the following, we onstrut an analytial expression orre-sponding to the partile-partile diagram on the right-hand side. Note that beauseof the renaming (5.9) of partiles into holes and vie versa in the introdution ofthe Nambu index, the partile-partile diagram here does not orrespond to theeletroni partile-partile hannel, but is a part of the eletroni partile-holehannel in the symmetri phase. We assign labels to the partile-partile diagram93



5 Attrative Hubbard model
abbreviating piNi as i and de�ning p := p1 + p2. Employing the diagrammatirules from setion 3.5 yields�18Xk;M UN1N2M4M2(p1; p2; k)UM3M1N3N4(k;�k + p; p3)��� [G M3M4(k)G M1M2(�k + p)℄ ; (5.56)where U stands in for 2. A fator 1=2 beyond the diagrammati rules appearsbeause of the replaement G S! ��G G =2 from the Katanin trunation. We wouldlike to bring (5.56) into a form suitable for numerial evaluation. In partiular, itis our goal to plae the origin of the integration domain symmetrially with respetto the integrand's maxima. We onsider the ase where all external energies arezero. For the interation ow sheme, these maxima are loated at the momenta kwith �k = 0 or �k+p = 0 due to the energy denominators of the Green's funtions.For the momentum-shell uto� sheme, the maxima our on the line where theuto� � is equal to the dispersion �k or ��k+p. We rewrite the sale derivative ofthe propagators in (5.56):�� (G M3M4(k)G M1M2(�k + p)) = _G M3M4(k)G M1M2(�k + p)+G M3M4(k) _G M1M2(�k + p) (5.57)In a momentum-shell uto� sheme, the dotted term's weight is onentratedaround the momentum shells on whih the uto� � equals the energy �k or �k+p,respetively, as argued above. Plaing the origin of the Brillouin zone at k = 0,we note that this plaement is asymmetri with the weight distribution of theseond term on the right-hand side of (5.57). We therefore shift the origin in thisintegration by shifting the integration variable k ! �k+ p, and also exhange theNambu index names M1 $M3, M2 $M4 in the summation, yieldingG M3M4(k) _G M1M2(�k + p)! _G M3M4(k)G M1M2(�k + p): (5.58)The di�erentiation has moved from one Green's funtion to the other. We thus�nd that the integrand of (5.56) onsists of two terms:UN1N2M4M2(p1; p2; k)UM3M1N3N4(k;�k + p; p3) _G M3M4(k)G M1M2(�k + p)+UN1N2M2M4(p1; p2;�k + p)UM1M3N3N4(�k + p; k; p3) _G M3M4(k)G M1M2(�k + p):(5.59)These terms are idential due to the antisymmetry of U. Therefore, we usePP(1234) := �14Xk;M UN1N2M4M2(p1; p2; k)UM3M1N3N4(k;�k + p; p3)� _G M3M4(k)G M1M2(�k + p) (5.60)94



5.3 Renormalization groupfor the numerial treatment, where i = 1 : : : 4 as arguments abbreviate Nipi. Notethat for zero energy, the sign of the argument of the Green's funtion an beinverted. This allows us to use the same routines for the alulation of this produtof Green's funtions as for the alulation of the partile-hole ontributions.We turn to the partile-hole diagram
ontaining the ontributions of the eletroni partile-partile hannel. Employingthe diagrammati rules of setion 3.5 leads to the expression12Xk;M UM3N2M2N4(k; p2; k + q)UN1M1N3M4(p1; k + q; p3)��� [G M3M4(k)G M1M2(k + q)℄ ; (5.61)where q := p3 � p1. A fator 1=2 beyond the diagrammati rules appears beauseof the replaement G S ! ��G G , as for the partile-partile diagram. Note that(5.61) needs to be antisymmetrized with respet to the inoming four-momenta p1,p2 and Nambu indies N1, N2. We treat the di�erentiation of (5.61) as in (5.57)and (5.59) to obtainUM1N2M4N4(k � q; p2; k)UN1M3N3M2(p1; k; p3) _G M3M4(k)G M1M2(k � q)+UM3N2M2N4(k; p2; k + q)UN1M1N3M4(p1; k + q; p3) _G M3M4(k)G M1M2(k + q): (5.62)Plugging (5.62) into (5.61) yieldsPH(1234) := 12Xk;M UM1N2M4N4(k � q; p2; k)UN1M3N3M2(p1; k; p3)� _G M3M4(k)G M1M2(k � q)+UM3N2M2N4(k; p2; k + q)UN1M1N3M4(p1; k + q; p3)� _G M3M4(k)G M1M2(k + q); (5.63)where i as an argument abbreviates Nipi. The full symboli ow equation thusreads _U(1234) = 4PP(1234) + 2PH(1234)� 2PH(2134); (5.64)where the antisymmetrization of the partile-hole term is denoted expliitly. TheMatsubara sums in the integrands appearing on the right-hand side an be eval-uated expliitly if we restrit ourselves to energy-independent ouplings and self-energies. The resulting expressions are listed in appendix C without sale di�er-entiation, whih will be arried out numerially.95



5 Attrative Hubbard modelTo �nd a more expliit form of the ow equation (3.29) for the self-energy, weemploy (4.6) to obtain_�N1N2(p) = Xk;M1M2 UM1N2M2N1(k; p; k)SM1M2(k)= Xk;M1M2 UM1N2M2N1(k; p; k) _�(k)�G M1M2�� (k) (5.65)Sine U is assumed to be independent of energy, (5.65) shows that no energydependene of � is generated in the ow. We an therefore do the Matsubara sumsanalytially, and list the result in appendix D. This onludes our derivation ofthe one-partile irreduible renormalization group ow equations for the Hubbardmodel in the Katanin trunation.5.3.2 Numerial setupWe would like to solve the ow equations (5.65) and (5.64) numerially at T = 0.To reah this goal, we need to develop an implementation whih runs in appro-priate timeframes on the omputers of 2007. The numerial omplexity of theow equations is determined by the disretization used for the e�etive interationU. We engage in a thought experiment to gauge the numerial omplexity of theproblem. Suppose that we hoose to represent eah momentum argument of Uby taking into aount Lk distint values. Similarly, we represent a Matsubarafrequeny argument by L! distint values. Without exploiting the symmetries ofU, we note that we have to store L3kL3! values, and, more importantly, to solvean integro-di�erential equation for as many owing variables. Let's assume thatLk = 100, L! = 10, and that we need 100 disrete steps for the integration of thedi�erential equation, at eah of whih an integral kernel requiring 100 oating pointoperations must be evaluated 1000 times to obtain a suÆiently aurate estimateof the integration over the Brillouin zone. There are also 16 ombinations of thefour Nambu indies, bringing the total number of oating point operations ne-essary to 1017, implying that a urrent mahine doing 1000 million oating pointoperations per seond would take ten thousand days to �nish a single fRG inte-gration. This is a rough estimate, and experiene suggests that suh integrationsmay take even longer in reality due to administrative overheads.To urb the number of oating point operations neessary for the integration ofthe ow equations, we drop the energy-dependene of U, assuming U(!1 ; !2; !3) =U(0; 0; 0) for all energies !i. This means in partiular that the total energy of thepartiles involved in the interation as well as their energy di�erene are zero. Thisimplies that we are treating the part of the e�etive interation most singular inthe energies as representative for the whole e�etive interation, overestimating itstotal weight and therefore also the tendeny towards symmetry breaking of thephysial system.A parametrization taking into aount partially the momentum dependeneof the e�etive interation is the so-alled \pathing" as desribed for example96



5.3 Renormalization groupby Rohe (2005). The Brillouin zone is split into pathes as shown in Fig. 5.26.The funtional value of the e�etive interation at the mid-angle of the path

Figure 5.26: Pathing of the Brillouin zone used with varying total number ofpathes in the numerial alulations. Every path overs the same angle.and on the Fermi surfae is assumed to be also valid for all other momenta inthe path. Thus taking only the momentum dependene along the Fermi surfaeinto aount is motivated by the �nding that the dependene perpendiular to theFermi surfae is irrelevant in the RG sense for the momentum-shell ow withoutsymmetry-breaking (Shankar (1991, 1994)).For the self-energy, we hoose an analogous parametrization as for the e�etiveinteration U. This implies an overestimation of the order parameter leading toa suppression of the ow of the e�etive interation due to the removal of smallenergy denominators in the loops of (5.64). Furthermore, we neglet the e�et ofthe normal self-energy by setting it to zero in the ow. This has the importantonsequene that the Fermi surfae does not shift in the ow. In partiular, phe-nomena suh as symmetry-breaking Fermi surfae deformations (Metzner et al.(2003); Yamase and Kohno (2000); Yamase et al. (2005)) are therefore ignored.The integration of the bubble integrals of appendix C is simpli�ed numeriallyby our hoie of the Brillouin zone origin in setion 5.3.1. We split eah pathinto subpathes aording to the Gaussian integration rule and integrate over thelines separating the subpathes. As these lines run perpendiular to the linesof maximum weight of the bubble integrands and the pathes are slim, a smallnumber (5-7) of lines per path suÆes to approximate the integral over the pathto the desired auray. Furthermore, the parts of eah line where the integrand ismaximal are the viinity of the Fermi surfae and the viinity of the points wherethe kineti energy of an internal line equals the uto�. For these regions, we hoosea signi�antly �ner mesh for the integration as for the rest of the line.We turn to the symmetries of the problem to further redue its numerial om-plexity. The symmetry of the Brillouin zone under reetions along the kx-axis,ky-axis and the diagonal allows us to onsider one of the momentum arguments ofU only in the Brillouin zone's �rst otant. Time reversal symmetry implies that97



5 Attrative Hubbard modelipping all Nambu indies of the e�etive interation leaves it invariant if there isan even number of + indies, and leads to a fator �1 if there is an odd numberof + indies. The antisymmetry of U under the exhange of the outgoing or in-oming legs implies that we an hoose to onsider only one of the Nambu indexombinations (+�), (�+). For (��) and (++), we need to onsider only one halfof the possible momentum ombinations. We ignore the simpli�ation possibleby exploiting spin rotation invariane beause after employing the above simpli-�ations, spin rotation invariane only redues the number of owing ouplingsby another � 20%. This disussion of the e�et of symmetries on the numerialomplexity onludes the setup of the numerial alulation.5.3.3 Momentum-shell owsWe numerially integrate the ow equations (5.64) and (5.65) as outlined in setion5.3.2, employing a soft momentum-shell uto��(�; �) = 1� 1e�(j�j��)=� + 1 : (5.66)Our results do not depend on �, whih adjusts the sharpness of the uto�. Ourmain goal is to obtain a deent approximation for the superonduting order pa-rameter �, whih is given by the anomalous part of the self-energy. We inludean initial order parameter in the ow as in setion 4, depiting the resulting owof the order parameter in Fig. 5.27. On the left, we plot a ow for whih the

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 1e-05  1e-04  0.001  0.01  0.1  1  10

∆ 
[u

ni
ts

 o
f 

t]

Λ [units of t]

patch 0
patch 1
patch 2

 1e-05  1e-04  0.001  0.01  0.1  1  10
Λ [units of t]

patch 0
patch 1
patch 2Figure 5.27: Momentum-shell ow of the order parameter. Twelve pathes, quarter�lling: � = �1:41t, t0 = �0:1t; U0 = 1:5t, �ext = 10�3t (left), �ext = 5 � 10�4t(right).maximum e�etive interation is four times the bandwidth. Due to the limitedphase spae of this maximum e�etive interation, this is still a well-ontrolledow. However, from Fig. 4.3 in setion 4.1.5 on ows for the harge-density-wave98



5.3 Renormalization groupmean-�eld problem, we learn that if the initial order parameter is about 1% of the�nal order parameter value, the error in the �nal order parameter as omparedto the ase of spontaneous symmetry breaking is already � 20%. To hek theinternal onsisteny of our method, we note that by solving the BCS gap equationin the presene of a momentum-shell uto�, the rule � = 2� an be inferred. Theresults of Reiss (2006) on�rm this for the attrative Hubbard model. In our ase,� � 0:025t, and we therefore expet an order parameter magnitude � � 0:05t.The fRG yields � � 0:06t for �ext � 0:02�, a deviation in the expeted range.Reiss et al. (2007) �nd � � 0:026t and a orresponding � for similar parameters.In setion 5.3.4, we see that the method used by Reiss et al. (2007) yields resultsagreeing better with the results obtained here for other �llings. To study the in-uene of the external �eld, we half the strength of the initial order parameterand plot the resulting ow of the order parameter on the right side of Fig. 5.27.While the �nal value of the order parameter is loser to the result estimated fromthe ritial sale, the e�etive interation has exeeded ten times the system'sbandwidth in the ow.If we employ too small an external �eld, the method breaks down. To illus-trate this, we plot in Fig. 5.28 the relationship between a Cooper-hannel e�e-
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5 Attrative Hubbard modelnotation properly de�ned, we note that for small external �elds, beyond a ertainmagnitude of the e�etive interation the inrease of the e�etive interation in theow is not ountered by an appropriate inrease in the order parameter. The ef-fetive interation diverges while the order parameter is essentially onstant. Thisimplies that the divergene is due to the unstable _V � V 2 struture of the e�etiveinteration ow equation. The divergene prevents us from onsidering arbitrarilysmall external �elds.We onsider the ow of the e�etive interations to obtain an understanding oftheir relative importane in the system. From our resummation studies in setion5.2, we have learned that the Goldstone phase mode V �W dominates for zeromomentum transfer in the Nambu formalism, whih is equivalent to zero totalmomentum if we transform bak to the original  �elds aording to (5.9). InFig. 5.29, we plot several ows from this hannel. They dominate in magnitude
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5.3 Renormalization group
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5 Attrative Hubbard model
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i in Fig. 5.32. 
2 and 
4 are not plotted as they an be obtained from 
1and 
3 by exploiting time-reversal invariane and the antisymmetry of V underommutation of the �rst or the seond pair of parameters. We observe that whilethe momentum ombinations in the �gure imply that the 3+1 e�etive interationspeak for zero momentum transfer, this does not hange into zero total momentumupon transformation to the  �elds from (5.9) as for V + W and V � W . Wenote that the �nal value of both 
1 and 
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5.3 Renormalization group
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5 Attrative Hubbard model
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5.3 Renormalization group5.3.4 Interation owsWe numerially integrate the ow equations (5.64) and (5.65) as outlined in setion5.3.2, employing the interation ow (Honerkamp et al. (2004)) and inluding aounterterm as in setion 4.2. The uto� funtion is haraterized by�(�) = p�as in (4.11). This is equivalent to turning on the interation linearly from 0 at� = �i = 0 to its bare value U0 at � = �f = 1. The anomalous part of the Green'sfuntion (5.54) is onsidered to stem from an external �eld �i and a ounterterm�, the di�erene between the two onstituting an e�etive external �eld �e� , inanalogy to (2.14). The ut-o� Green's funtion is given shematially asG �1 = Q 0 +�� � �; (5.67)where the ounterterm has been taken into aount as part of the bare propagator,while �i will be inluded as the initial ondition for the anomalous self-energy.In Fig. 5.34 we show examples of the ow of the e�etive order parameter �e�
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5 Attrative Hubbard modelorder parameter value obtained in the minimum ounterterm ow. The behaviordesribed above is interpreted as being analogous to the strong-attrator behaviorin the mean-�eld ase. The overestimation of the order parameter value for largerounterterms is attributed to the overestimation of the gap in the ow due to theneglet of the order parameter's energy dependene and momentum dependeneperpendiular to the Fermi surfae. Consequently, we hoose the minimum orderparameter obtainable by terminating the ow at �f in the weak-oupling regime asour approximation for the physial order parameter. Note that this �nal value isapproximately 20% smaller than the �nal value obtained with the momentum-shellmethod in setion 5.3.3, whih is biased by a �nite, albeit small, external �eld.5.3.5 Order parameter for superondutivityFig. 5.35 shows the strength of the superonduting order parameter � versus
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5.3 Renormalization group�tting � = � exp�� �U0�to the numerial data at small U0 via �, �, whih works well only away from vanHove �lling. The utuations negleted in mean-�eld have been found to have asuppressing e�et on the order parameter. The situation has been studied for theextended Hubbard model by van Dongen (1991), for the attrative Hubbard modelby Mart��n-Rodero and Flores (1992), and for fermions moving in a ontinuous spaewith an attrative ontat interation by Kuhiev and Sushkov (1996). The valuesobtained here are quite similar to those obtained by Reiss et al. (2007); Metzneret al. (2006); Reiss (2006), where the suppression fator varies between 1.5 forU0 = 3t and 3 for U0 = 0:5t at half �lling and t0 = �0:1t. However, we note thatat small ouplings, we observe a drop in the gap renormalization �MF=�RG for half�lling and �nite t0 and in�nite values { suppressed in the �gure { for quarter �llingand �nite t0 at small oupling. This is due to numerial problems in resolving suhsmall order parameters as appear for small U0. Note that in the half-�lled ase, hotspots where the Fermi surfae intersets the umklapp surfae exist, as disussed byRohe and Metzner (2005); Rohe (2005). In the ase of � = t0 = 0, our results agreebetter with Reiss et al. (2007), but the gap renormalization we obtain is smallerfor small ouplings. Note that in this ase, the Brillouin zone forms a diamondexhibiting zero urvature. The perfet nesting enountered in this situation leadsto a degeneray of density waves and superondutivity (Salettar et al. (1989)).In the following, we ompare the values of the order parameter we alulatewith values of the order parameter alulated with other methods. Table 5.1ompares our fRG results to results obtained by Reiss (2006) using a ombinationU [t℄ fRG fRG and MF random �eld1.0 0.04 0.03 0.061.5 0.11 0.10 0.092.0 0.23 0.21 0.132.5 0.35 0.36 0.163.0 0.48 0.52� 0.193.5 0.62 n.a. 0.22Table 5.1: Superonduting order parameter � in units of t for t0 = 0, half �lling,omparing fRG results to results from a ombination of fRG and mean �eld (MF) aswell as from the random �eld method. �: value obtained using linear extrapolation.of symmetri-phase fRG and mean �eld (MF) alulations as well as to resultsobtained by Gyor�y et al. (1991) using a random-�eld method. While the agree-ment with the results obtained using the ombination of fRG and mean �eld isvery good, the random �eld method yields omparable values only oinidentally.It predits a linear dependene of the order parameter on the bare interation U0for weak up to intermediate oupling. However, in the parameter range studied, ityields the same order of magnitude for the order parameter as the fRG. Table 5.2107



5 Attrative Hubbard modelompares our results to results by Reiss (2006) for �nite t0. While the values areU [t℄ fRG fRG and MF1.0 0.02 0.021.5 0.11 0.072.0 0.22 0.152.5 0.35 0.263.0 0.49� 0.38Table 5.2: Superonduting order parameter � in units of t for t0 = �0:1t, � =�0:2612t (half �lling), omparing fRG results to results from a ombination offRG and MF. �: value obtained using linear extrapolation.of the same order of magnitude, the results obtained by employing only the fRGare larger by between 20� 30%.This onludes the numerial study of the ow equations, showing that it is fea-sible to obtain reasonable order parameter values for the attrative Hubbard modelfrom them. Furthermore, we have on�rmed for weak oupling the strength of theorder parameter suppression by utuations found in previous studies (Mart��n-Rodero and Flores (1992); Reiss (2006)), whih is approximately 50% for a widerange of parameters.
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Chapter 6ConlusionsIn this work, two new proedures for alulating order parameters in models of itin-erant interating fermions exhibiting spontaneous symmetry breaking were imple-mented. At the heart of both proedures is the one-partile irreduible funtionalrenormalization group (fRG) method for fermions in a trunation due to Katanin(2004) whih solves mean-�eld models exatly. The method works by solving aset of oupled integro-di�erential equations for the e�etive interation(s) and theorder parameter(s) derived from an exat funtional di�erential equation for thee�etive ation. The solution onnets initial values that an be read o� froma model's de�nition with the fully renormalized e�etive values. The �rst proe-dure, employing a momentum-shell uto� and a small external symmetry-breaking�eld, is an extension of a proedure suggested by Salmhofer et al. (2004) to thebreaking of a disrete symmetry at �nite and zero temperature, and �nally to anon-mean-�eld model at zero temperature. It was presented here using a gen-eralization of the Nambu formalism that makes it natural to take into aountall anomalous e�etive interations arising in the symmetry-broken phase. Theseond proedure ombines an interation ow with a ounterterm for the orderparameter and was introdued here. It was presented using the same generalizedNambu formalism. In both ases, a family of e�etive ations is generated in theow. For the momentum-shell uto� ase, these ations onstitute solutions forsystems in a onstant external symmetry-breaking �eld where only modes whosekineti energy exeeds a uto� sale dereasing in the ow are taken into aount.For the interation-ow ase, the e�etive ations onstitute solutions for systemswhose bare interation is the ow parameter in an external symmetry-breaking�eld whih is dereasing in the ow. While the former approah delivers resultsfor only one of possibly many stable, metastable, and unstable equilibrium on�gu-rations, the latter approah an treat all of them. By adjusting the initial externalsymmetry-breaking �eld whih is ompletely or partly o�set at the end of the owby an appropriate ounterterm, we hose the on�guration of interest. This alsomakes it possible to san the thermodynami potential landsape of the systemfor minima orresponding to stable and metastable on�gurations. This permitsthe study of spontaneous �rst-order phase transitions and hysteresis e�ets, bothof whih were outside the reah of the fermioni fRG before.110



We have illustrated the interation-ow proedure by the example of a reduedharge-density-wave (CDW) model, whih exhibits a �rst-order phase transitionbeyond whih the lattie translational symmetry { whih is disrete { is sponta-neously broken. The model is solved exatly by the fRG in the trunation employedhere as well as by mean-�eld theory. For the fRG, this is reeted in the our-rene of one strong attrator for eah stable and eah metastable on�guration,reproduing exat results at zero external �eld. Flows for all ounterterms ter-minate at one of these attrators. The CDW model also exhibits a seond-orderphase transition in a ertain parameter range. We have studied this transitionusing both the momentum-shell proedure in a small external �eld as well as thenewly-introdued interation-ow proedure with a ounterterm. As the model issolved exatly, both methods yield the same results. However, a major di�erenewas found in the shape of the ows, with the momentum-shell proedure produ-ing a maximum of the e�etive interation at the sale whih is ritial for zeroexternal �eld. In ontrast, in the interation-ow proedure the maximal value ofthe e�etive interation is reahed only at the end of the ow. The ritial-salemaximum also represents a key di�erene to the momentum-shell treatment ofontinuous-symmetry breaking by Salmhofer et al. (2004), where the ow of atleast one e�etive interation saturates at its maximum value in the symmetry-broken phase. While the height of the e�etive interation maximum in both asesis singularly dependent on the external �eld, the saturation value for disrete-symmetry breaking is independent of it. This implies that no olletive modearises as expeted for the disrete-symmetry breaking ase. The ow of the e�e-tive interation mathes the ow of an e�etive interation ombination presentin the fRG ow for ontinuous-symmetry breaking. We have found that whilethe maximal e�etive interation value is suppressed by inreasing the external�eld, deviations of the order parameter magnitude from the value for spontaneoussymmetry breaking grow as the external �eld is inreased for the momentum-shellproedure. This indiates that in our approah for non-mean-�eld models, a om-promise for the strength of the external �eld must be found to obtain reasonablevalues from the momentum-shell proedure. This neessity may stem from thedisretization, the numerial implementation, the trunation, or any ombinationof these three fators.As a preursor study to the appliation of the method to a more ompliatedmodel, a resummation sheme taking into aount Cooper and forward satteringby summing up ladders, bubble hains, and all ombinations of the two has beendeveloped. The main fous of this study were anomalous e�etive interations withan odd number of inoming legs, arising from the above-mentioned ombinationsof bubbles and ladders and dubbed \3 + 1" e�etive interations. To study theirinuene, the generalized Nambu formalism taking into aount anomalous e�e-tive interations was adapted to the ase of superondutivity. A redued modelinorporating Cooper and forward sattering proesses has been solved exatly.Expliit formulas for all e�etive interations have been found and analyzed, espe-ially with regard to the Goldstone mode. The resummation sheme has also been111



6 Conlusionsapplied as an approximation to the two-dimensional attrative Hubbard model.Numerial alulations have shown that if one neglets the 3 + 1 verties, thee�etive interations hange only slightly for the momentum ombinations mostrelevant for symmetry-breaking. However, e�etive interations for other momen-tum ombinations exhibit hanges varying from omplete disregard for the 3 + 1e�etive interations to total suppression by them. The qualitative properties ofolletive modes were found to be unhanged by the 3 + 1 e�etive interations,as expeted.To study the utility of the fRG proedures for more ompliated situations, wehave applied both the external-�eld and the ounterterm variant to the attrativeHubbard model at zero temperature, whih exhibits superonduting order. Inthe former ase, we have studied the ow of the order parameter as well as ofthe various e�etive interations in detail. We have found that the order param-eter saturates at reasonable values even if there are e�etive interations in theow whose magnitude exeeds ten times the bandwidth. However, if the external�eld is hosen too small thus allowing the e�etive interations to grow beyond aertain threshold, the ow of the order parameter stops while the e�etive intera-tions diverge at a ritial sale. For larger external �elds, the e�etive interationassoiated with the Goldstone mode as well as the e�etive interation driving theorder parameter ow have been found to behave as for the ase of the mean-�eldmodels. However, 3+1 anomalous e�etive interations were shown to arise in theow for the attrative Hubbard model. These e�etive interations diverge in theforward-sattering hannel if the external �eld is sent to zero, but more slowly thanthe e�etive interation assoiated with the phase mode in the Cooper hannel.For the interation-ow ase, while the strong-attrator behavior from themean-�eld models is not reprodued, we have found a lustering of �nal valuesfor a ertain set of ounterterms. Together with a limit on the strength of the ef-fetive interation, this allows us to selet reasonable results. We have shown suhresults for the order parameter for a range of interation strengths and �llings. Wehave found that espeially for half �lling and vanishing next-nearest neighbor hop-ping, our results are very lose to results found previously using a ombination offRG and mean-�eld analysis by Reiss (2006). Away from half-�lling, our methodonsistently yields a larger order parameter than the earlier alulations. The re-dution fator omparing the order parameter we alulate to the pure-mean-�eldresult varies between 1.7 and 2.2. This is quite lose to approximate values foundin the nineties. The proedure newly assembled in this thesis has thus been su-essfully applied to a lattie model with itinerant fermions and on-site attrativeinteration in the superonduting phase.
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Anhang ADeutshe ZusammenfassungIn der vorliegenden Arbeit werden zwei neue Prozeduren zur n�aherungsweisen Be-stimmung der mit Symmetriebrehung in Systemen mit itineranten, wehselwir-kenden Fermionen assoziierten Ordnungsparameter implementiert. Beide basierenauf der Methode der einteilhenirreduziblen funktionalen Renormierungsgruppe(fRG) f�ur Fermionen in der Trunkierung von Katanin (2004). Diese l�ost Modelleexakt, wenn sie auh durh Molekularfeldtheorie exakt gel�ost werden. Ihr wesent-liher Bestandteil ist ein Satz gekoppelter Integro-Di�erentialgleihungen f�ur diee�ektiven Wehselwirkungen und die Ordnungsparameter, der aus einer exaktenfunktionalen Di�erentialgleihung f�ur die e�ektive Wirkung hergeleitet wird (Salm-hofer and Honerkamp (2001)). Diese Gleihungen verbinden aus Modellde�nitionenbekannte Anfangsbedingungen mit voll renormierten e�ektiven Werten. Die ersteProzedur, die einen Impulsshalenuss und ein kleines �au�eres symmetriebrehen-des Feld einsetzt, ist eine Erweiterung der von Salmhofer et al. (2004) vorgeshla-genen Prozedur auf endlihe Temperaturen, Brehung diskreter Symmetrie unddurh Molekularfeldtheorie niht exakt l�osbare Modelle. Sie wird hier unter Be-nutzung einer Verallgemeinerung des Nambu-Formalismus pr�asentiert, die alle beiSymmetriebrehung auftretenden anomalen e�ektiven Zweiteilhenwehselwirkun-gen ber�uksihtigt. Die zweite Prozedur kombiniert einen Wehselwirkungsussmit einem Gegenterm f�ur den Ordnungsparameter und wird hier eingef�uhrt. Inbeiden F�allen wird im Fluss eine Shar e�ektiver Wirkungen generiert. Beim Im-pulsshalenuss sind diese e�ektiven Wirkungen L�osungen f�ur Systeme, bei denennur Freiheitsgrade ber�uksihtigt werden, deren kinetishe Energie oberhalb ei-ner im Fluss sinkenden Shwelle liegt. Au�erdem beziehen sih die L�osungen aufdas System in einem kleinen, im Fluss konstanten, symmetriebrehenden �au�erenFeld. Beim Wehselwirkungsuss mit Gegenterm ist die nakte Wehselwirkungder Flussparameter und es ergeben sih L�osungen f�ur ein �au�eres Feld, das mitdem Fluss f�allt. W�ahrend die erste Variante nur ein Ergebnis f�ur eine bestimmteGleihgewihtskon�guration ergibt, kann die letztere Resultate f�ur beliebige sta-bile, metastabile oder labile Gleihgewihtskon�gurationen des Systems liefern.Durh Einstellung des Anfangswert des externen Feldes, das am Ende des Flussesganz oder teilweise vom Gegenterm kompensiert wird, erfolgt die Auswahl der zuuntersuhenden Kon�guration. So ist es m�oglih, die Landshaft des thermodyna-113



A Deutshe Zusammenfassungmishen Potentials in Abh�angigkeit vom Ordnungsparameter zu rastern und auhunbekannte stabile oder metastabile Gleihgewihtskon�gurationen aufzusp�uren.Damit wird das Studium von spontanen Phasen�uberg�angen erster Ordnung sowievon Hysteresee�ekten m�oglih, die bisher mit der Methode der fermionishen funk-tionalen Renormierungsgruppe niht behandelt werden konnten. Ebenso wird diedirekte Untersuhung der Situation bei vershwindendem �au�eren Feld m�oglih.Die Prozedur mit Wehselwirkungsuss wird am Beispiel eines reduzierten La-dungsdihtewellenmodells illustriert, in dem bei ausreihend niedriger Temperaturund in einem bestimmten F�ullungsbereih eine diskrete Symmetrie spontan ge-brohen wird. Dieses Modell wird sowohl von der fRG in der hier verwendetenTrunkierung wie auh durh Molekularfeldtheorie exakt gel�ost. F�ur jeden stabilenoder metastabilen Gleihgewihtszustand zeigt sih ein starker Attraktor. Fl�ussef�ur beliebige Gegenterme innerhalb eines bestimmten Bereihs enden alle an demselben Attraktor, und jeder Fluss endet an einem der physikalishen Attraktoren.Sowohl f�ur vershwindendes als auh f�ur endlihes externes Feld werden exak-te Ergebnisse reproduziert. Das selbe Modell zeigt auh einen Phasen�ubergangzweiter Ordnung in einem bestimmten Parameterbereih. Der �Ubergang wird inder vorliegenden Arbeit sowohl mit Hilfe der Impulsshalenprozedur und einemkleinen externen symmetriebrehenden Feld als auh mit der Prozedur mit Weh-selwirkungsuss und einem Gegenterm untersuht. Da das Modell in beiden F�allenexakt gel�ost wird, sind die Ergebnisse in allen Situationen, in denen beide Proze-duren funktionieren, identish. Eine deutliher Untershied �ndet sih aber in derForm der Fl�usse. Die Impulsshalenprozedur weist ein deutlihes Maximum der ef-fektiven Wehselwirkung an der Skala auf, die bei vershwindendem externen Feldkritish ist. Im Gegensatz dazu wird bei der Wehselwirkungsst�arkenprozedur derMaximalwert der e�ektiven Wehselwirkung erst am Ende des Flusses erreiht.Ein wesentliher Untershied zur Behandlung der Brehung einer kontinuierlihenSymmetrie mit der Impulsshalenprozedur zeigt sih im S�attigungsverhalten desFlusses f�ur kleine Skalen. W�ahrend es bei Brehung einer kontinuierlihen Sym-metrie eine e�ektive Wehselwirkung gibt, die bei ihrem Maximalwert s�attigt undeine, die zu einem wesentlih kleineren Wert konvergiert, gibt es bei Brehungeiner diskreten Symmetrie nur die letztere. Bei dieser h�angt zwar die H�ohe desMaximums im Fluss singul�ar von der St�arke des externen Feldes ab, der Endwertist von ihr aber unbeeinusst. Dies impliziert, dass im Grundzustand keine kollek-tive Mode auftritt, wie es bei Brehung einer diskreten Symmetrie auh erwartetwird. Der Fluss der e�ektiven Wehselwirkung im Fall der Brehung einer diskretenSymmetrie entspriht aber dem Fluss einer e�ektiven Wehselwirkung im Fall derBrehung einer kontinuierlihen Symmetrie. Bei Brehung einer kontinuierlihenSymmetrie tritt eine weitere e�ektive Wehselwirkung auf, die mit einer Phasen-oder Goldstone-Mode assoziiert wird. Als treibender Faktor f�ur den Fluss des Ord-nungsparameters erweist sih in beiden F�allen die niht mit der Goldstone-Modeassoziierte e�ektive Wehselwirkung. Dementsprehend s�attigt die Steigung desOrdnungsparameterusses f�ur kleine Skalen, so dass ein Endwert in Abh�angigkeitvom externen Feld ermittelt werden kann. W�ahrend das Maximum der e�ektiven114



Wehselwirkung im Fluss durh Erh�ohung der St�arke des externen Felds unter-dr�ukt wird, steigt die Abweihung der St�arke des Ordnungsparameters vom Wertf�ur spontane Symmetriebrehung dadurh. Bei unserer Herangehensweise f�ur dieImpulsshalenprozedur m�ussen f�ur die Wahl der St�arke des externen Feldes beideE�ekte ber�uksihtigt werden, wenn Modelle, f�ur welhe die Methode niht exaktist, untersuht werden sollen.Als Vorstudie zur Anwendung der Methode auf ein niht-reduziertes Modell,f�ur welhes keine exakten Ergebnisse zu erwarten sind, wird eine Resummierungder St�orungstheorie f�ur die e�ektive Wehselwirkung vorgenommen. Diese Resum-mierung ber�uksihtigt Prozesse im Cooper- und Vorw�artsstreuungskanal durhSummation von Leitern, Blasenketten und allen Kombinationen daraus. Die Un-tersuhung dient haupts�ahlih dem Verst�andnis der anomalen Wehselwirkungenmit einer ungeraden Anzahl einlaufender Beinhen und Ihrer Bedeutung. Sie ent-stehen durh die oben beshriebenen Kombinationen aus Leitern und Blasenket-ten und werden als e�ektive 3 + 1 Wehselwirkungen bezeihnet. Ein reduziertesModell, das sowohl Cooper- als auh Vorw�artsstreuungsprozesse beinhaltet, wirddurh die Resummierung exakt gel�ost. Es ergeben sih Formeln f�ur alle e�ektivenWehselwirkungen, die insbesondere im Hinblik auf die Goldstone-Mode analy-siert werden. Die Resummierung wird au�erdem als N�aherung auf das attraktiveHubbard-Modell in zwei Dimensionen am absoluten Nullpunkt angewandt. Nu-merishe Rehnungen zeigen, dass der Einuss der e�ektiven 3 + 1 Wehselwir-kungen bei denjenigen Impulskombinationen, die f�ur die Supraleitung ausshlag-gebend sind, shwah ist. Bei anderen Impulskombinationen variiert ihr Einussvon v�olliger Unwihtigkeit bis zu v�olliger Unterdr�ukung der entsprehenden e�ek-tiven Wehselwirkung. Die qualitativen Eigenshaften der kollektiven Moden sindwie erwartet unbeeinusst von den e�ektiven 3 + 1 Wehselwirkungen.Um die N�utzlihkeit der neuen fRG-Prozeduren f�ur niht-reduzierte Modelle zuuntersuhen, werden beide Varianten auf das attraktive Hubbard-Modell in zweiDimensionen am absoluten Nullpunkt angewandt. Das Modell zeigt dort supralei-tende Ordnung. F�ur die Impulsshalenprozedur werden die Fl�usse des Ordnungs-parameters und der vershiedenen e�ektiven Wehselwirkungen analysiert. DerOrdnungsparameter konvergiert zu realistishen Werten, auh wenn die e�ektivenWehselwirkungen Maximalwerte annehmen, die ein Zehnfahes der Bandbreitedes Systems �ubersteigen. Allerdings divergieren die e�ektiven Wehselwirkungenbei einer kritishen Skala, wenn das externe Feld zu klein gew�ahlt wird. In dieserSituation ie�t der Ordnungsparameter mit steigender e�ektiver Wehselwirkungjenseits eines kritishen Werts f�ur diese niht mehr. Die Divergenz beshr�ankt sihauf die mit der Goldstone-Mode assoziierte e�ektive Wehselwirkung, w�ahrenddie den Ordnungsparameter treibende e�ektive Wehselwirkung entsprehend des-sen Verhalten niht weiter ie�t. F�ur gr�o�ere externe Felder verhalten sih beidee�ektive Wehselwirkungen wie in den reduzierten Modellen, die durh Moleku-larfeldtheorie exakt gel�ost werden. Allerdings treten im Fluss f�ur das attrakti-ve Hubbard-Modell e�ektive 3 + 1 Wehselwirkungen auf. Diese divergieren imVorw�artsstreukanal wenn das externe Feld gegen Null geht, aber langsamer als die115



A Deutshe Zusammenfassunge�ektiven Wehselwirkungen, die der Goldstone-Mode im Cooper-Kanal zugeord-net sind.Bei der Umsetzung der Prozedur mit Wehselwirkungsuss existiert kein star-ker Attraktor wie im Fall des Ladungsdihtewellenmodells. Allerdings h�aufen sihdie Endwerte f�ur den Ordnungsparameter f�ur Gegenterme aus einem bestimmtenIntervall. Diese H�aufung ergibt zusammen mit einer Beshr�ankung der maximalene�ektiven Wehselwirkung ein Kriterium f�ur die Auswahl eines Resultats f�ur denOrdnungsparameter. Die so gewonnenen Ergebnisse sind f�ur vershiedene hemi-she Potentiale und Wehselwirkungsst�arken dargestellt. Insbesondere f�ur halbeF�ullung �ahneln die ermittelten Werte stark denen, die mit einer Kombination ausfRG und Molekularfeldrehnung gefunden wurden. Abseits halber F�ullung liefertdie hier verwendete Methode konsistent gr�o�ere Ergebnisse f�ur den Ordnungs-parameter als die kombinierte Rehnung. Der Reduktionsfaktor, der die Unter-dr�ukung des Ordnungsparameters in der fRG-Rehnung im Vergleih zur reinenMolekularfeldrehnung misst, variiert zwishen 1,7 und 2,2. Dies entspriht denN�aherungswerten, die in den Neunzigern gefunden wurden. Die neu vorgestelltefRG-Prozedur ist damit erfolgreih als N�aherung auf ein bisher niht exakt gel�ostesfestk�orperphysikalishes Modell mit Symmetriebrehung angewandt worden.Die Arbeit gliedert sih wie folgt. In Kapitel 2 wird mit Hilfe der Molekularfeld-theorie das Ladungsdihtewellenmodell auf Phasen�uberg�ange erster und zweiterOrdnung untersuht. Die funktionale Renormierungsgruppe wie auh die Katanin-Trunkierung und die Notation zur Behandlung von im Rahmen von Symmetrieb-rehungen auftretenden anomalen e�ektiven Wehselwirkungen werden in Kapitel3 eingef�uhrt. Kapitel 4 enh�alt die L�osung des Ladungsdihtewellenmodells mittelsbeider Renormierungsgruppenprozeduren. Die Symmetriebrehung im attraktivenHubbard-Modell wird in Kapitel 5 sowohl mit beiden Renormierungsgruppenproze-duren als auh mittels einer Resummierung der St�orungstheorie behandelt. Ebensowerden dort die e�ektiven 3 + 1 Wehselwirkungen an einem reduzierten Modellmit Cooper- und Vorw�artsstreuung ohne Impuls�ubertrag sowie am attraktivenHubbard-Modell studiert.
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Appendix BMatsubara sumsA;B � 0, !n = (2n+ 1)�T = (2n+ 1)�=�, nF (x) = 1exp(x=T )+1 .TXn 1!2n + A2 1!2n +B2 = 1A2 �B2 �tanh(�B=2)2B � tanh(�A=2)2A � (B.1)TXn !n!2n + A2 !n!2n +B2 = 12(A2 �B2) (A tanh(�A=2)� B tanh(�B=2)) (B.2)TXn 1(!2n + A2)2 = tanh(�A=2)4A3 � �8A2 osh2(�A=2) (B.3)TXn !2n(!2n + A2)2 = tanh(�A=2)4A + �8 osh2(�A=2) (B.4)TXn 1(i!n + A)2 = � 14T osh2(�A=2) (B.5)TXn 1!2n + A2 = tanh(�A=2)2A (B.6)TXn !2n(!2n + A2)3 = 116A ��2 tanh(�A=2)2 osh2(�A=2) � �2A osh2(�A=2) + tanh(�A=2)A2 �(B.7)TXn 1(!2n + A2)3 = 116A3 �3 tanh(�A=2)A2 � 3�2A osh2(�A=2) � �2 tanh(�A=2)2 osh2(�A=2)�(B.8)117



B Matsubara sums Æ > 0 in the following.TXn exp(i!nÆ)!2n + A2 = sinh [(�=2� Æ)A℄2A osh(�A=2) (B.9)TXn (i!n + A) exp(i!nÆ)!2n + A2 = � exp(AÆ) 1exp(�A) + 1 = �TXn exp(i!nÆ)i!n � A(B.10)TXn (i!n � A) exp(i!nÆ)!2n + A2 +B2 =12 " exp(ÆpA2 +B2)exp ��pA2 +B2�+ 1 � ApA2 +B2 � 1�� exp(�ÆpA2 +B2)exp ���pA2 +B2�+ 1 � ApA2 +B2 + 1�#(B.11)Æ!0! � A2pA2 +B2 tanh(�pA2 +B2=2)� 12 (B.12)TXn (i!n � A) exp(�i!nÆ)!2n + A2 +B2 Æ!0! � A2pA2 +B2 tanh(�pA2 +B2=2) + 12 (B.13)TXn 1!2n + Ai!n � B = 1pA2 � 4B �nF �12 �A�pA2 � 4B���nF �12 �A+pA2 � 4B��� (B.14)TXn 1(!2n � AB + i!n(A +B))2 = 1(A� B)2 � 2A� B (nF (B)� nF (A))+n0F (A) + n0F (B)� (B.15)TXn !2n(!2n � AB + i!n(A+B))2 = 1(A� B)2 �2A2nF (A)�B2nF (B)A�B �2(AnF (A) +BnF (B))�A2n0F (A)� B2n0F (B)� (B.16)TXn i!n(!2n � AB + i!n(A+B))2 = A +B(A� B)3 [nF (B)� nF (A)℄ +1(A� B)2 [An0F (A) +Bn0F (B)℄ (B.17)118



Appendix C
Bubble integrands
The bubble integrands below are obtained by Matsubara summing aording to(5.46) the produts (5.44) of Green's funtions (5.13). This operation is per-formed analytially under the assumption that the self-energy does not depend onfrequeny, whih is in general an approximation. Note that when these expres-sions are to be used in a renormalization group ow, the uto� funtion employedtherein must be frequeny-independent. Similarly, note for the following formu-las that � and � are to be onsidered di�erently in di�erent situations. For arenormalization group ow without ounterterm, they are to be multiplied by theuto� funtion, and the whole expression must be multiplied by the two uto�funtions orresponding to the two onvoluted propagators. If there is a ounter-term � present, � must be replaed by ����, and the multipliation with �is neessary as above.

TX!n H(k)H(k + p) =� 1eEk+p=T + 1 (Ek+p � (�k+p + �k+p))(�i�m + Ek+p � (�k + �k))2Ek+p(i�m � Ek+p + Ek)(�i�m + Ek+p + Ek)+ 1e�Ek+p=T + 1 (�Ek+p � (�k+p + �k+p))(�i�m � Ek+p � (�k + �k))2Ek+p(i�m + Ek+p + Ek)(�i�m � Ek+p + Ek)� 1eEk=T + 1 (Ek + i�m � (�k+p + �k+p))(Ek � (�k + �k))2Ek(�i�m + Ek+p � Ek)(i�m + Ek+p + Ek)+ 1e�Ek=T + 1 (�Ek + i�m � (�k+p + �k+p))(�Ek � (�k + �k))2Ek(�i�m + Ek+p + Ek)(i�m + Ek+p � Ek)119



C Bubble integrands
TX!n G(k + p)H(k) =1eEk+p=T + 1 (�Ek+p � (�k+p + �k+p))(�i�m + Ek+p � (�k + �k))2Ek+p(i�m � Ek+p + Ek)(�i�m + Ek+p + Ek)� 1e�Ek+p=T + 1 (Ek+p � (�k+p + �k+p))(�i�m � Ek+p � (�k + �k))2Ek+p(i�m + Ek+p + Ek)(�i�m � Ek+p + Ek)+ 1eEk=T + 1 (�Ek � i�m � (�k+p + �k+p))(Ek � (�k + �k))2Ek(�i�m + Ek+p � Ek)(i�m + Ek+p + Ek)� 1e�Ek=T + 1 (Ek � i�m � (�k+p + �k+p))(�Ek � (�k + �k))2Ek(�i�m + Ek+p + Ek)(i�m + Ek+p � Ek)
TX!n H(k + p)G(k) =� 1eEk+p=T + 1 (Ek+p � (�k+p + �k+p))(i�m � Ek+p � (�k + �k))2Ek+p(i�m � Ek+p + Ek)(�i�m + Ek+p + Ek)+ 1e�Ek+p=T + 1 (�Ek+p � (�k+p + �k+p))(i�m + Ek+p � (�k + �k))2Ek+p(i�m + Ek+p + Ek)(�i�m � Ek+p + Ek)� 1eEk=T + 1 (Ek + i�m � (�k+p + �k+p))(�Ek � (�k + �k))2Ek(�i�m + Ek+p � Ek)(i�m + Ek+p + Ek)+ 1e�Ek=T + 1 (�Ek + i�m � (�k+p + �k+p))(Ek � (�k + �k))2Ek(�i�m + Ek+p + Ek)(i�m + Ek+p � Ek)
TX!n G(k + p)G(k) =� 1eEk+p=T + 1 (�Ek+p � (�k+p + �k+p))(i�m � Ek+p � (�k + �k))2Ek+p(i�m � Ek+p + Ek)(�i�m + Ek+p + Ek)+ 1e�Ek+p=T + 1 (Ek+p � (�k+p + �k+p))(i�m + Ek+p � (�k + �k))2Ek+p(i�m + Ek+p + Ek)(�i�m � Ek+p + Ek)� 1eEk=T + 1 (�Ek � i�m � (�k+p + �k+p))(�Ek � (�k + �k))2Ek(�i�m + Ek+p � Ek)(i�m + Ek+p + Ek)+ 1e�Ek=T + 1 (Ek � i�m � (�k+p + �k+p))(Ek � (�k + �k))2Ek(�i�m + Ek+p + Ek)(i�m + Ek+p � Ek)120



TX!n H(k + p)F (k) =�keEk+p=T + 1 Ek+p � (�k+p + �k+p)2Ek+p(i�m � Ek+p + Ek)(�i�m + Ek+p + Ek)� �ke�Ek+p=T + 1 �Ek+p � (�k+p + �k+p)2Ek+p(i�m + Ek+p + Ek)(�i�m � Ek+p + Ek)+ �keEk=T + 1 Ek + i�m � (�k+p + �k+p)2Ek(�i�m + Ek+p � Ek)(i�m + Ek+p + Ek)� �ke�Ek=T + 1 �Ek + i�m � (�k+p + �k+p)2Ek(�i�m + Ek+p + Ek)(i�m + Ek+p � Ek)
TX!n G(k + p)F (k) =� �keEk+p=T + 1 �Ek+p � (�k+p + �k+p)2Ek+p(i�m � Ek+p + Ek)(�i�m + Ek+p + Ek)+ �ke�Ek+p=T + 1 Ek+p � (�k+p + �k+p)2Ek+p(i�m + Ek+p + Ek)(�i�m � Ek+p + Ek)� �keEk=T + 1 �Ek � i�m � (�k+p + �k+p)2Ek(�i�m + Ek+p � Ek)(i�m + Ek+p + Ek)+ �ke�Ek=T + 1 Ek � i�m � (�k+p + �k+p)2Ek(�i�m + Ek+p + Ek)(i�m + Ek+p � Ek)
TX!n F (k + p)H(k) =+ �k+peEk+p=T + 1 �i�m + Ek+p � (�k + �k)2Ek+p(i�m � Ek+p + Ek)(�i�m + Ek+p + Ek)� �k+pe�Ek+p=T + 1 �i�m � Ek+p � (�k + �k)2Ek+p(i�m + Ek+p + Ek)(�i�m � Ek+p + Ek)+ �k+peEk=T + 1 Ek � (�k + �k)2Ek(�i�m + Ek+p � Ek)(i�m + Ek+p + Ek)� �k+pe�Ek=T + 1 �Ek � (�k + �k)2Ek(�i�m + Ek+p + Ek)(i�m + Ek+p � Ek)121



C Bubble integrands
TX!n F (k + p)G(k) =� �k+peEk+p=T + 1 i�m � Ek+p � (�k + �k)2Ek+p(i�m � Ek+p + Ek)(�i�m + Ek+p + Ek)+ �k+pe�Ek+p=T + 1 i�m + Ek+p � (�k + �k)2Ek+p(i�m + Ek+p + Ek)(�i�m � Ek+p + Ek)� �k+peEk=T + 1 �Ek � (�k + �k)2Ek(�i�m + Ek+p � Ek)(i�m + Ek+p + Ek)+ �k+pe�Ek=T + 1 Ek � (�k + �k)2Ek(�i�m + Ek+p + Ek)(i�m + Ek+p � Ek)TX!n F (k + p)F �(k) =� �k+p��keEk+p=T + 1 12Ek+p(i�m � Ek+p + Ek)(�i�m + Ek+p + Ek)+ �k+p��ke�Ek+p=T + 1 12Ek+p(i�m + Ek+p + Ek)(�i�m � Ek+p + Ek)� �k+p��keEk=T + 1 12Ek(�i�m + Ek+p � Ek)(i�m + Ek+p + Ek)+ �k+p��ke�Ek=T + 1 12Ek(�i�m + Ek+p + Ek)(i�m + Ek+p � Ek)
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Appendix DTadpole integrands
TX!n G(i!n;k) = 12 � (�k + �k)tanh(Ek=2T )2EkWe assume ��k = �k and ��k = �k.TX!n H(i!n;k) = 12 + (�k + �k)tanh(Ek=2T )2EkTX!n F (i!n;k) = �k2Ek tanh(Ek=2T )
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