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Problem statement

Ak

@ This region is inaccessible to symmmetric-phase funRG
fechnigues.

@ Unfil recently, funRG techniques were unable to
reproduce mean-field results for mean-field-exact
models.

@ BCS-model (U(T) symmetry) at T = 0 has been
treated!

This talk: discrete-symmmetry breaking, T' > 0.
1 Salmhofer, Honerkamp, Metzner, Lauscher 2004
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Hamiltonian
At half-filling: a repulsive interaction restricted to
momentum-fransfers of Q := (w, w,...) generafes a
d-dimensional charge-density wave.
H=>, exng — % Zk,k, chk+QcL,ck,+Q +> . Aextc,t+Qck

® We assume the thermodynamic limit and a grand
canonical ensemble at zero chemical potential
(Here, this implies half filling).

® A/Uy: amplitude of the density wave. Appears as gap
INn the spectrum.

® [ effective interaction, effective coupling
t: Hopping integral, unit of energy.
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Exact Diagrammatics

® Resumming perturlbation theory leads o the gap
equation.
Py

@ [RPA resummation for the effective interaction.

E3+<l\>+"'3+?
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Results

Temperature-dependence of the gap, effective
iINnferaction
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The phase fransition is “smeared out” by the external field
and the singularity of the effective interaction is
regularized.
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e Gap flow equation

S=G%(G; )G
g = ?

® [Effective interaction flow equation

I

Initial conditions: V; = Uy, X; = Axt

d-order phase transitions

funRG equations
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funRG flows at 7' = (
The sub-T. flows of the effective interaction and the

gap resemble the temperature dependences.
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@ Increasing the external field suppresses the effective
interaction flow maximum and furthers the smearing
of the transition.

The self-energy’s final value changes by only 10% whi-
le the initial gap varies over two orders of magnitude
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funRG flows for T’
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@ Increase in temperature = Graph of flow moves o
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Comparison to BCS flows
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)Nd-order phase transitions
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BCS model: Nor-
mal and anoma-
lous effective
interactions (all ar-
rows in/out) exist.
Discrete-symmeitry
breaking flow of
the effective inter-
action resembles
the BCS flows’

sum. Inferpreta-
fion: amplitude
mode.
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T'-dependence of A.
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Hamiltonian

Uo
H=) (ex—p)m - N D CkChy@ChChag T D AextCii gl
k bk k
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Same diagrams as for =0

0- G

@ Simple rule: Add —u to the arguments of all Fermi
distributions (and derivatives) in . = 0 equations.

@ New: grand canonical potential 2 obtained by
iIntegrating the gap equation wrt the gap

0
I A N B
Vol QUO n ( )f(—p+ EB))

Exact Diagrammatics
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Grand canonical potential and pha

Grand canonical potential, Aextzlo'lot, U=0.24t, V=2t
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Phase diagram

Phase transitions for V=2t, A,,,=10 10
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Challenge: Starting af large A without appreciably
changing Q(T).

Challenge
Grand canonical potential, A, =107}, u=0.24t, Y=2t
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Back to the Hamiltonian. Now, add a counterterm A..

H :Z(Sk -
k

Yo 5 i i
N D ROtk Z AlexiChi
k,k’'

.'.
Acck+Qck

O naked propagator
To inifial self-energy

Set A = Aot
Momentum-shell cutoff: A+ and A. cancel at all
scales.

® Inferaction "cutoff”: At and A. cancel only at the
end of the flow. This implies: The inifial self-energy can
be chosen arbifrarily without changing the physics!

Counter terms and interaction flow
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Interaction flow of the self-energy

Interaction flows, 2d, V=2t, u=0.245t, T=0.001t
0.2 ! ! ! g
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Interaction flow of the coupling

Interaction flows, 2d, V=2t, u=0.245t, T=0.001t

=
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d canonical poten

= 1 /Vol, flow equation (fraditional 1PI):
= 3Tr (7x(Gy)(G — Go))

ool

Mahan (slightly generalized): = 2Tr(GXx/x). same
as adbove except for a constant factor.

Numerics currently fail to reproduce exact grand
canonical potential.
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| Conclusions
@ Flows in phases with a broken discrete symmetry

possible and illustrated above and below T.. Exact
results obtainable for mean-field models.
@ Ist-order phase transitions treatable with funRG.
1. So far only using the interaction flow
2. Work in progress

@ Outlook: Use the new methods study physically more
relevant problems.

Thanks to Sabine Andergassen, Tilman Enss, Andrey
Katanin, Julius Reiss, and Manfred Salmhofer for useful
discussions.
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