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Problem statement

1. Second-order phase transitions

�
T

This region is inaccessible to symmetric-phase funRG
techniques.

Until recently, funRG techniques were unable to
reproduce mean-field results for mean-field-exact
models.

BCS-model (U(1) symmetry) at T = 0 has been

treated1
This talk: discrete-symmetry breaking, T > 0.1 Salmhofer, Honerkamp, Metzner, Lauscher 2004
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Hamiltonian

1. Second-order phase transitions

At half-filling: a repulsive interaction restricted to
momentum-transfers of Q := (�; �; : : : ) generates ad-dimensional charge-density wave.H =Pk "knk � U0N Pk;k0 
yk
k+Q
yk0
k0+Q +Pk�ext
yk+Q
k
We assume the thermodynamic limit and a grand
canonical ensemble at zero chemical potential
(Here, this implies half filling).�=U0: amplitude of the density wave. Appears as gap

in the spectrum.U : effective interaction, effective couplingt: Hopping integral, unit of energy.
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Exact Diagrammatics

1. Second-order phase transitions

Resumming perturbation theory leads to the gap
equation.
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RPA resummation for the effective interaction.
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Results

1. Second-order phase transitions

Temperature-dependence of the gap, effective
interaction
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The phase transition is “smeared out” by the external field
and the singularity of the effective interaction is
regularized.
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funRG equations

1. Second-order phase transitions

Gap flow equation
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Effective interaction flow equation
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Initial conditions: Vi = U0, �i = �ext
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funRG flows at T = 0

1. Second-order phase transitions

The sub-T
 flows of the effective interaction and the
gap resemble the temperature dependences.
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Increasing the external field suppresses the effective
interaction flow maximum and furthers the smearing
of the transition.

The self-energy’s final value changes by only 10% whi-
le the initial gap varies over two orders of magnitude
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funRG flows for T > 0

1. Second-order phase transitions
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Increase in temperature ) Graph of flow moves to
lower scales
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Comparison to BCS flows

1. Second-order phase transitions
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BCS model: Nor-
mal and anoma-

lous effective
interactions (all ar-
rows in/out) exist.
Discrete-symmetry
breaking flow of
the effective inter-
action resembles
the BCS flows’
sum. Interpreta-
tion: amplitude
mode.
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T -dependence of �


1. Second-order phase transitions
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Hamiltonian

2. First-order phase transitions

H =Xk ("k��)nk � U0N Xk;k0 
yk
k+Q
yk0
k0+Q +Xk �ext
yk+Q
k
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Exact Diagrammatics

2. First-order phase transitions

Same diagrams as for � = 0
�����������
�����������
�����������
�����������

�����������
�����������
�����������
�����������

�
�
�
� =

������������
������������
������������
������������

������������
������������
������������
������������

�
�
�
�

�
�
�
�

= +
Simple rule: Add �� to the arguments of all Fermi
distributions (and derivatives) in � = 0 equations.

New: grand canonical potential 
 obtained by
integrating the gap equation wrt the gap
Vol = �22U0 � 12Xk ln (f(��� E)f(��+ E))
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Grand canonical potential and phases

2. First-order phase transitions
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Phase diagram

2. First-order phase transitions
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Challenge

2. First-order phase transitions
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Starting point �i
Flow dire
tion

Challenge: Starting at large � without appreciably
changing 
(T ).
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Counter terms and interaction flow

2. First-order phase transitions

Back to the Hamiltonian. Now, add a counterterm �
.H =Xk ("k � �)nk �Xk ��

yk+Q
k

� U0N Xk;k0 
yk
k+Q
yk0
k0+Q +Xk ��ext
yk+Q
k

To naked propagator

To initial self-energy

Set �
 = �ext
Momentum-shell cutoff: �ext and �
 cancel at all
scales.

Interaction “cutoff”: �ext and �
 cancel only at the
end of the flow. This implies: The initial self-energy can
be chosen arbitrarily without changing the physics!
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Interaction flow of the self-energy

2. First-order phase transitions
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Interaction flow of the coupling

2. First-order phase transitions
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Grand canonical potential?

2. First-order phase transitions

~
 = 
=Vol, flow equation (traditional 1PI):_~
 = 12Tr � dd�(G�10 )(G�G0)�

Mahan (slightly generalized):

_~
 = 2Tr(G� _�=�), same

as above except for a constant factor.

Numerics currently fail to reproduce exact grand
canonical potential.
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Conclusions

2. First-order phase transitions

Flows in phases with a broken discrete symmetry
possible and illustrated above and below T
. Exact
results obtainable for mean-field models.

1st-order phase transitions treatable with funRG.

1. So far only using the interaction flow

2. Work in progress

Outlook: Use the new methods study physically more
relevant problems.

Thanks to Sabine Andergassen, Tilman Enss, Andrey
Katanin, Julius Reiss, and Manfred Salmhofer for useful
discussions.
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